6 research outputs found

    Fast Steering Mirror Disturbance Effects on Overall System Optical Performance for the Large Ultraviolet/optical/infrared Surveyor (LUVOIR) Concept Using a Non-Contact Vibration Isolation and Precision Pointing System

    Get PDF
    As the optical performance requirements of space telescopes get more stringent, the need to analyze all possible error sources early in the mission design becomes critical. One large telescope with tight performance requirements is the Large Ultraviolet / Optical / Infrared Surveyor (LUVOIR) concept. The LUVOIR concept includes a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100nm to 2.5um. Using an isolation architecture that involves no mechanical contact between the telescope and the host spacecraft structure allows for tighter performance metrics than current space-based telescopes being flown. Because of this separation, the spacecraft disturbances can be greatly reduced and disturbances on the telescope payload contribute more to the optical performance error. A portion of the optical performance error comes from the disturbances generated from the motion of the Fast Steering Mirror (FSM) on the payload. Characterizing the effects of this disturbance gives insight into the specifications on the FSM needed to achieve the tight optical performance requirements of the overall system. Through analysis of the LUVOIR finite element model and linear optical model given a range of input disturbances at the FSM, the optical performance of the telescope and recommendations for FSM specifications can be determined. The LUVOIR observatory control strategy consists of a multi-loop control architecture including the spacecraft Attitude Control System (ACS), Vibration Isolation and Precision Pointing System (VIPPS), and FSM. This paper focuses on the control loop containing the FSM disturbances and their effects on the telescope optical performance

    Preliminary Jitter Stability Results for the Large UV/Optical/Infrared (LUVOIR) Surveyor Concept Using a Non-Contact Vibration Isolation and Precision Pointing System

    Get PDF
    The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor concept. The LUVOIR concept includes a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100nm to 2.5 um. Wavefront error (WFE) stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Through the utilization of an isolation architecture that involves no mechanical contact between the telescope and the host spacecraft structure, a system design is realized that maximizes the telescope dynamic stability performance without driving stringent technology requirements on spacecraft structure, sensors or actuators. Through analysis of the LUVOIR finite element model and linear optical model, the wavefront error and Line-Of-Sight (LOS) jitter performance is discussed in this paper when using the Vibration Isolation and Precision Pointing System (VIPPS) being developed cooperatively with Lockheed Martin in addition to a multi-loop control architecture. The multi-loop control architecture consists of the spacecraft Attitude Control System (ACS), VIPPS, and a Fast Steering Mirror on the instrument. While the baseline attitude control device for LUVOIR is a set of Control Moment Gyroscopes (CMGs), Reaction Wheel Assembly (RWA) disturbance contribution to wavefront error stability and LOS stability are presented to give preliminary results in this paper. CMG disturbance will be explored in further work to be completed

    Biomarkers for the diagnosis of heart failure in people with diabetes: A consensus report from diabetes technology society.

    No full text
    Diabetes Technology Society assembled a panel of clinician experts in diabetes, biomarker screening, and heart failure to review the current evidence on biomarker screening of people with diabetes (PWD) for heart failure (HF), who are, by definition, at risk for HF (Stage A HF). This consensus report reviews features of HF in PWD from the perspectives of 1) epidemiology, 2) classification of stages, 3) pathophysiology, 4) biomarkers for diagnosing, 5) biomarker assays, 6) diagnostic accuracy of biomarkers, 7) benefits of biomarker screening, 8) consensus recommendations for biomarker screening, 9) stratification of Stage B HF, 10) echocardiographic screening, 11) management of Stage A and Stage B HF, and 12) future directions. The Diabetes Technology Society panel recommends 1) biomarker screening with one of two circulating natriuretic peptides (B-type natriuretic peptide or N-terminal prohormone of B-type natriuretic peptide), 2) beginning screening five years following diagnosis of type 1 diabetes (T1D) and at the diagnosis of type 2 diabetes (T2D), 3) beginning routine screening no earlier than at age 30 years for T1D (irrespective of age of diagnosis) and at any age for T2D, 4) screening annually, and 5) testing any time of day. The panel also recommends that an abnormal biomarker test defines asymptomatic preclinical HF (Stage B HF). This diagnosis requires follow-up using transthoracic echocardiography for classification into one of four subcategories of Stage B HF, corresponding to risk of progression to symptomatic clinical HF (Stage C HF). These recommendations will allow identification and management of Stage A and Stage B HF in PWD to prevent progression to Stage C HF or advanced HF (Stage D HF)

    Imunologia da Leishmaniose tegumentar

    No full text
    corecore