32 research outputs found

    Anterior nasal versus nasal mid-turbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: does localisation or professional collection matter?

    Get PDF
    INTRODUCTION: Most SARS-CoV-2 antigen-detecting rapid diagnostic tests require nasopharyngeal sampling, which is frequently perceived as uncomfortable and requires healthcare professionals, thus limiting scale-up. Nasal sampling could enable self-sampling and increase acceptability. The term nasal sampling is often not used uniformly and sampling protocols differ. METHODS: This manufacturer-independent, prospective diagnostic accuracy study, compared professional anterior nasal and nasal mid-turbinate sampling for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. The second group of participants collected a nasal mid-turbinate sample themselves and underwent a professional nasopharyngeal swab for comparison. The reference standard was real-time polymerase chain reaction (RT-PCR) using combined oro-/nasopharyngeal sampling. Individuals with high suspicion of SARS-CoV-2 infection were tested. Sensitivity, specificity, and percent agreement were calculated. Self-sampling was observed without intervention. Feasibility was evaluated by observer and participant questionnaires. RESULTS: Among 132 symptomatic adults, both professional anterior nasal and nasal mid-turbinate sampling yielded a sensitivity of 86.1% (31/36 RT-PCR positives detected; 95%CI: 71.3-93.9) and a specificity of 100.0% (95%CI: 95.7-100). The positive percent agreement was 100% (95%CI: 89.0-100). Among 96 additional adults, self nasal mid-turbinate and professional nasopharyngeal sampling yielded an identical sensitivity of 91.2% (31/34; 95%CI 77.0-97.0). Specificity was 98.4% (95%CI: 91.4-99.9) with nasal mid-turbinate and 100.0% (95%CI: 94.2-100) with nasopharyngeal sampling. The positive percent agreement was 96.8% (95%CI: 83.8-99.8). Most participants (85.3%) considered self-sampling as easy to perform. CONCLUSION: Professional anterior nasal and nasal mid-turbinate sampling are of equivalent accuracy for an antigen-detecting rapid diagnostic test in ambulatory symptomatic adults. Participants were able to reliably perform nasal mid-turbinate sampling themselves, following written and illustrated instructions. Nasal self-sampling will facilitate scaling of SARS-CoV-2 antigen testing

    SARS-CoV-2 Variant of Concern B.1.1.7: Diagnostic Sensitivity of Three Antigen-Detecting Rapid Tests.

    Get PDF
    Funder: Foundation for Innovative New DiagnosticsFunder: World Health OrganizationFunder: Ministry of Science, Research and Culture, State of Baden Wuerttemberg, German

    Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests:a systematic review and meta-analysis

    Get PDF
    Background: During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests’ clinical accuracy. Methods: We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. Results: We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer’s instructions and those conducted differently, or between point-of-care and lab-based testing. Conclusion: Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.</p

    Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests:a systematic review and meta-analysis

    Get PDF
    Background: During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests’ clinical accuracy. Methods: We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. Results: We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer’s instructions and those conducted differently, or between point-of-care and lab-based testing. Conclusion: Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.</p

    Diagnostic accuracy and feasibility of patient self-testing with a SARS-CoV-2 antigen-detecting rapid test.

    Get PDF
    BACKGROUND: Considering the possibility of nasal self-sampling and the ease of use in performing SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs), self-testing is a feasible option. OBJECTIVE: The goal of this study was a head-to-head comparison of diagnostic accuracy of patient self-testing with professional testing using a SARS-CoV-2 Ag-RDT. STUDY DESIGN: We performed a manufacturer-independent, prospective diagnostic accuracy study of nasal mid-turbinate self-sampling and self-testing with symptomatic adults using a WHO-listed SARS-CoV-2 Ag-RDT. Procedures were observed without intervention. For comparison, Ag-RDTs with nasopharyngeal sampling were professionally performed. Estimates of agreement, sensitivity, and specificity relative to RT-PCR on a combined oro-/nasopharyngeal sample were calculated. Feasibility was evaluated by observer and participant questionnaires. RESULTS: Among 146 symptomatic adults, 40 (27.4%) were RT-PCR-positive for SARS-CoV-2. Sensitivity with self-testing was 82.5% (33/40; 95% CI 68.1-91.3), and 85.0% (34/40; 95% CI 70.9-92.9) with professional testing. At high viral load (≥7.0 log10 SARS-CoV-2 RNA copies/ml), sensitivity was 96.6% (28/29; 95% CI 82.8-99.8) for both self- and professional testing. Deviations in sampling and testing were observed in 25 out of the 40 PCR-positives. Most participants (80.9%) considered the Ag-RDT as easy to perform. CONCLUSION: Laypersons suspected for SARS-CoV-2 infection were able to reliably perform the Ag-RDT and test themselves. Procedural errors might be reduced by refinement of the instructions for use or the product design/procedures. Self-testing allows more wide-spread and frequent testing. Paired with the appropriate information of the public about the benefits and risks, self-testing may have significant impact on the pandemic

    Dissociating Markers of Senescence and Protective Ability in Memory T Cells

    Get PDF
    No unique transcription factor or biomarker has been identified to reliably distinguish effector from memory T cells. Instead a set of surface markers including IL-7Rα and KLRG1 is commonly used to predict the potential of CD8 effector T cells to differentiate into memory cells. Similarly, these surface markers together with the tumor necrosis factor family member CD27 are frequently used to predict a memory T cell's ability to mount a recall response. Expression of these markers changes every time a memory cell is stimulated and repeated stimulation can lead to T cell senescence and loss of memory T cell responsiveness. This is a concern for prime–boost vaccine strategies which repeatedly stimulate T cells with the aim of increasing memory T cell frequency. The molecular cues that cause senescence are still unknown, but cell division history is likely to play a major role. We sought to dissect the roles of inflammation and cell division history in developing T cell senescence and their impact on the expression pattern of commonly used markers of senescence. We developed a system that allows priming of CD8 T cells with minimal inflammation and without acquisition of maximal effector function, such as granzyme expression, but a cell division history similar to priming with systemic inflammation. Memory cells derived from minimal effector T cells are fully functional upon rechallenge, have full access to non-lymphoid tissue and appear to be less senescent by phenotype upon rechallenge. However, we report here that these currently used biomarkers to measure senescence do not predict proliferative potential or protective ability, but merely reflect initial priming conditions

    TRAIL Deficiency Does Not Rescue Impaired CD8 +

    No full text

    The ability of CD8 memory T cells to mount a robust recall response is independent of acquiring effector markers in the primary response.

    No full text
    <p>(A) 40+ days after the primary response, mice of both experimental groups were immunized with recombinant vaccinia virus expressing Ova (Vacc-OVA) <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0032576#pone.0032576-Prlic4" target="_blank">[40]</a>. The OT-I memory T cell response was analyzed 5 days later measuring T cell function (IFNγ, granzyme B) and (B) expansion. (C) 500 memory T cells (40+ days after priming) were transferred into naïve hosts and (C) expansion and (D) T cell function (IFNγ, granzyme B) were determined 7 days after infection with Vacc-OVA. (E) The OT-I memory T cell (40+ days after priming) response in the lung was analyzed 5 days after challenge with Vacc-OVA. The data shown are representative of 2 similar experiments with 3–5 animals per group.</p

    CD8 T cells do not express effector markers when inflammation is limited.

    No full text
    <p>C57BL/6 mice were injected intravenously (i.v.) with 1×10<sup>6</sup> peptide pulsed DCs and 1×10<sup>4</sup> naïve OT-I T cells (Thy1.1) with (top, DC+LM) or without (bottom, DC only) an accompanying i.v. <i>Listeria monocytogenes</i> (LM) infection. (A) OT-I T cell surface phenotype (IL-7Rα, KLRG-1, CD62L, CD27), (B) function (IL-2, IFNγ and Tbet expression) and (C) cytolytic potential (granzyme A and B) were determined 5 days post priming. Naïve polyclonal CD8 T cells are included as a baseline reference (bottom panel). (D) The number of OT-I T cells in the spleen on day 5 post priming was calculated. (E) OT-I T cell abundance in the lung was determined on day 5 post infection. The data shown are representative of up to 10 (and at least 2) independent experiments with 2–5 animals per group.</p
    corecore