1,082 research outputs found

    On Shape Transformations and Shape Fluctuations of Cellular Compartments and Vesicles

    Get PDF
    We discuss the shape formation and shape transitions of simple bilayer vesicles in context with their role in biology. In the first part several classes of shape changes of vesicles of one lipid component are described and it is shown that these can be explained in terms of the bending energy concept in particular augmented by the bilayer coupling hypothesis. In the second part shape changes and vesicle fission of vesicles composed of membranes of lipid mixtures are reported. These are explained in terms of coupling between local curvature and phase separation

    Shock-wave therapy of gastric outlet syndrome caused by a gallstone

    Get PDF
    A patient with gastric outlet syndrome (Bouveret's syndrome) caused by a large gallstone impacted in the duodenal bulb was successfully treated by extracorporeal shock-wave lithotripsy. Thus, open abdominal surgery could be avoided. For disintegration of the stone, three consecutive lithotripsy procedures were necessary. Thereafter, stone fragments could be extracted endoscopically. Extracorporeal shock-wave lithotripsy could become a non-surgical alternative in patients with obstruction of the duodenum caused by a gallstone

    Does ursodeoxycholic acid change the proliferation of the colorectal mucosa? A randomized, placebo-controlled study

    Get PDF
    Background: In animal models ursodeoxycholic acid (UDCA) showed a chemoprotective effect against colon cancer. To explain this, a reduced proliferation of the colorectal mucosal proliferation was suggested. We, therefore, examined the influence of UDCA on the proliferation of normal colorectal mucosa in humans. Methods: Following endoscopic polypectomy, 20 patients with colorectal adenomas were randomized to receive either UDCA (750 mg/day, n = 10, group A) or placebo (n = 10, group B) for 6 months in a double-blinded way. Colorectal biopsies were sampled before and at the end of the medication by total colonoscopy. Colorectal mucosal proliferation was measured by FACScan analysis of propidium iodine labeling. Serum was sampled, and serum bile acids were analyzed by gas chromatography. Results: The proliferation rates at the end of the study were similar in both groups (median 15.4%; range 12.0-20.9 in group A; median 16.0%, 14.0-20.2 in group B, p = 0.41). Serum lithocholic acid levels at the end of the study were significantly higher in group A (1.3 mumol/l, 0.9-1.8) than in group B (0.7 mumol/l, 0-1.7, p < 0.02), whereas serum deoxycholic acid levels were similar in both groups. Conclusions: In this study, UDCA treatment for 6 months does not seem to induce changes in the proliferative behavior of the colorectal mucosa in patients with adenomas. It seems likely that a putative chemopreventive effect of UDCA in humans is not exerted by a reduction of the colorectal proliferation. Copyright (C) 2003 S. Karger AG, Basel

    Two-dimensional streptavidin crystals on giant lipid bilayer vesicles

    Get PDF
    Streptavidin was crystallized on giant bilayer vesicles (20-60 mum) in sucrose solution at various pH values. The streptavidin-coated vesicles exhibited unique roughened spherical and prolate ellipsoidal shapes, illustrating resistance to curvature of the two-dimensional crystals. Studies indicated that the spheroids and prolate ellipsoids correspond to different crystal morphologies. Through confocal microscopy, the various crystal morphologies on vesicle surfaces were observed under different solution conditions. Unlike two-dimensional (2D) streptavidin crystals grown in ionic buffer that assume the P1, P2, and C222 lattices at pH 4, 5.5, and 7, respectively (Wang et al. Langmuir 1999, 15, 154 1), crystals grown in sucrose with no added salt show only the lowest density C222 lattice due to strong electrostatic interactions

    Phase ordering and shape deformation of two-phase membranes

    Full text link
    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres and tori. Using an exact periodic domain wall solution we solve for the shape and phase ordering field, and estimate the degree of deformation of the membrane. The results are pertinent to a preferential phase separation in regions of differing curvature on a variety of vesicles.Comment: 4 pages, submitted to PR

    Flexible Lipid Bilayers in Implicit Solvent

    Full text link
    A minimalist simulation model for lipid bilayers is presented. Each lipid is represented by a flexible chain of beads in implicit solvent. The hydrophobic effect is mimicked through an intermolecular pair potential localized at the ``water''/hydrocarbon tail interface. This potential guarantees realistic interfacial tensions for lipids in a bilayer geometry. Lipids self assemble into bilayer structures that display fluidity and elastic properties consistent with experimental model membrane systems. Varying molecular flexibility allows for tuning of elastic moduli and area/molecule over a range of values seen in experimental systems.Comment: 5 pages, 5 figure

    Thermo-mechanic-electrical coupling in phospholipid monolayers near the critical point

    Full text link
    Lipid monolayers have been shown to represent a powerful tool in studying mechanical and thermodynamic properties of lipid membranes as well as their interaction with proteins. Using Einstein's theory of fluctuations we here demonstrate, that an experimentally derived linear relationship both between transition entropy S and area A as well as between transition entropy and charge q implies a linear relationships between compressibility \kappa_T, heat capacity c_\pi, thermal expansion coefficient \alpha_T and electric capacity CT. We demonstrate that these couplings have strong predictive power as they allow calculating electrical and thermal properties from mechanical measurements. The precision of the prediction increases as the critical point TC is approached

    Shape Changes of Self-Assembled Actin Bilayer Composite Membranes

    Full text link
    We report the self-assembly of thin actin shells beneath the membranes of giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin polymerization in the initially spherical vesicles. Buckling of the vesicles and the formation of blisters after thermally induced bilayer expansion is demonstrated. Bilayer flickering is dominated by tension generated by its coupling to the actin cortex. Quantitative flicker analysis suggests the bilayer and the actin cortex are separated by 0.4 \mum to 0.5 \mum due to undulation forces.Comment: pdf-file, has been accepted by PR
    • …
    corecore