16 research outputs found

    Simultaneous Identification of DNA and RNA Viruses Present in Pig Faeces Using Process-Controlled Deep Sequencing

    Get PDF
    Background: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. Results: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7 % of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8 % of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pi

    High diversity of picornaviruses in rats from different continents revealed by deep sequencing

    Get PDF
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission

    The porcine virome and xenotransplantation

    No full text
    The composition of the porcine virome includes viruses that infect pig cells, ancient virus-derived elements including endogenous retroviruses inserted in the pig chromosomes, and bacteriophages that infect a broad array of bacteria that inhabit pigs. Viruses infecting pigs, among them viruses also infecting human cells, as well as porcine endogenous retroviruses (PERVs) are of importance when evaluating the virus safety of xenotransplantation. Bacteriophages associated with bacteria mainly in the gut are not relevant in this context. Xenotransplantation using pig cells, tissues or organs is under development in order to alleviate the shortage of human transplants. Here for the first time published data describing the viromes in different pigs and their relevance for the virus safety of xenotransplantation is analysed. In conclusion, the analysis of the porcine virome has resulted in numerous new viruses being described, although their impact on xenotransplantation is unclear. Most importantly, viruses with known or suspected zoonotic potential were often not detected by next generation sequencing, but were revealed by more sensitive methods

    Virulence and Resistance Determinants of German Staphylococcus aureus ST398 Isolates from Nonhuman Sources▿†

    No full text
    A series of 100 Staphylococcus aureus isolates ascribed to sequence type 398 (ST398) and recovered from different sources (healthy carrier and diseased pigs, dust from pig farms, milk, and meat) in Germany were investigated for their virulence and antimicrobial resistance genetic background. Antimicrobial resistance was determined by the disk diffusion method. Virulence and resistance determinants (37 and 31 genes, respectively) were tested by PCR. Only two virulence profiles, including the accessory gene regulator agrI and three or four hemolysin-encoding genes, were detected. In contrast, 33 resistance profiles were distinguished (only 11 were shown by more than one isolate). Fifty-nine isolates were multiresistant (four or more antimicrobial classes), and 98 were methicillin resistant (mecA positive). All of the ST398 isolates showed resistance to tetracycline [encoded by tet(M) alone or together with tet(K) and/or tet(L)]. In addition, 98% were resistant to other antimicrobials, including macrolide-lincosamine-streptogramin B (70%, encoded by ermA, ermB, and ermC, alone or in combination), trimethoprim (65%, mostly due to dfrK and dfrG), kanamycin and gentamicin [29% and 14%, respectively, mainly related to aac(6â€Č)-Ie-aph(2″)-Ia and/or ant(4â€Č)-Ia but also to aph(3â€Č)-IIIa], chloramphenicol (9%, fexA or cfr), quinupristin-dalfopristin (9%), ciprofloxacin (8%), and trimethoprim-sulfamethoxazole (4%). The heterogeneity of the resistance profiles underlines the ability of the ST398 clone to acquire multiple antimicrobial resistance genes. However, the virulence gene content of the tested isolates was low. Continuous surveillance is needed to clarify whether its pathogenicity potential for animals and humans will increase over time
    corecore