4 research outputs found

    Cobalt Ion Promoted Redox Cascade: A Route to Spiro Oxazine-Oxazepine Derivatives and a Dinuclear Cobalt(III) Complex of an <i>N</i>‑(1,4-Naphthoquinone)‑<i>o</i>‑aminophenol Derivative

    No full text
    The study discloses that the redox activity of <i>N</i>-(1,4-naphthoquinone)-<i>o</i>-aminophenol derivatives (L<sup>R</sup>H<sub>2</sub>) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L<sup>R</sup>H<sub>2</sub> is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2−) (L<sup>R 2–</sup>) and SQ-N-(1,4-naphthoquinone) (L<sup>R •–</sup>) states in the complexes. Reactions of L<sup>R</sup>H<sub>2</sub> with cobalt­(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives (<sup>OX</sup>L<sup>R</sup>) in good yields, when R = H, Me, <sup>t</sup>Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L<sup>R</sup>H<sub>2</sub> → <sup>OX</sup>L<sup>R</sup> in MeOH is a (6H<sup>+</sup> + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C–O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L<sup>Me •–</sup>)­Co<sup>III</sup>Cl<sub>2</sub>] (<b>A</b>). Notably, formation of a spiro derivative was not detected in CH<sub>3</sub>CN and the reaction ends up furnishing <b>A</b>. The route of the reaction is tunable by R, when R = NO<sub>2</sub>, it is a (2e + 4H<sup>+</sup>) oxidation reaction affording a dinuclear L<sup>R 2–</sup> complex of cobalt­(III) of the type [(L<sup>NO2 2–</sup>)<sub>2</sub>Co<sup>III</sup><sub>2</sub>(OMe)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>1</b>) in good yields. No cascade occurs with zinc­(II) ion even in MeOH and produces a L<sup>Me •–</sup> complex of type [(L<sup>Me •–</sup>)­Zn<sup>II</sup>Cl<sub>2</sub>] (<b>2</b>). The intermediate <b>A</b> and <b>2</b> exhibit strong EPR signals at <i>g</i> = 2.008 and 1.999, confrming the existence of L<sup>Me •–</sup> coordinated to low-spin cobalt­(III) and zinc­(II) ions. The intermediates of L<sup>R</sup>H<sub>2</sub> → <sup>OX</sup>L<sup>R</sup> conversion were analyzed by ESI mass spectrometry. The molecular geometries of <sup>OX</sup>L<sup>R</sup> and <b>1</b> were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations

    Radical and Non-Radical States of the [Os(PIQ)] Core (PIQ = 9,10-Phenanthreneiminoquinone): Iminosemiquinone to Iminoquinone Conversion Promoted <i>o</i>‑Metalation Reaction

    No full text
    The coordination and redox chemistry of 9,10-phenanthreneiminoquinone (PIQ) with osmium ion authenticating the [Os<sup>II</sup>(PIQ<sup>•–</sup>)], [Os<sup>III</sup>(PIQ<sup>•–</sup>)], [Os<sup>III</sup>(C,N-PIQ)], [Os<sup>III</sup>(PIQ)], and [Os<sup>III</sup>(PIQ<sup>2–</sup>) ] states of the [Os­(PIQ)] core in the complexes of types <i>trans-</i>[Os<sup>II</sup>(PIQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>1</b>), <i>trans-</i>[Os<sup>III</sup>(PIQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(C,N-PIQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]·2CH<sub>2</sub>Cl<sub>2</sub> (<b>3</b>·2CH<sub>2</sub>Cl<sub>2</sub>), <i>trans-</i>[Os<sup>III</sup>(C,N-PIQ<sup>Br</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]·2CH<sub>2</sub>Cl<sub>2</sub> (<b>4</b>·2CH<sub>2</sub>Cl<sub>2</sub>), <i>trans-</i>[Os<sup>III</sup>(C,N-PIQ<sup>Cl2</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b>), <i>trans-</i>[Os<sup>III</sup>(PIQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup>1/2I<sub>3</sub><sup>–</sup>1/2Br<sup>–</sup> (<b>1</b><sup>+</sup>1/2I<sub>3</sub><sup>–</sup>1/2Br<sup>–</sup>), [Os<sup>III</sup>(PIQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>2</b><sup>+</sup>), and [Os<sup>III</sup>(PIQ<sup>2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>−</sup> (<b>2</b><sup>–</sup>) are reported (PIQ<sup>•–</sup> = 9,10-phenanthreneiminosemiquinonate anion radical; C,N-PIQ = ortho-metalated PIQ, C,N-PIQ<sup>Br</sup> = ortho-metalated 4-bromo PIQ, and C,N-PIQ<sup>Cl2</sup> = ortho-metalated 3,4-dichloro PIQ). Reduction of PIQ by [Os<sup>II</sup>(PPh<sub>3</sub>)<sub>3</sub>(H)­(CO)­Br] affords <b>1</b>, while the reaction of PIQ with [Os<sup>II</sup>(PPh<sub>3</sub>)<sub>3</sub>Br<sub>2</sub>] furnishes <b>2</b>. Oxidation of <b>1</b> with I<sub>2</sub> affords <b>1</b><sup>+</sup>1/2I<sub>3</sub><sup>–</sup>1/2Br<sup>–</sup>, while the similar reactions of <b>2</b> with X<sub>2</sub> (X = I, Br, Cl) produce the ortho-metalated derivatives <b>3</b>·2CH<sub>2</sub>Cl<sub>2</sub>, <b>4</b>·2CH<sub>2</sub>Cl<sub>2</sub>, and <b>6</b>. PIQ and PIQ<sup>2–</sup> complexes of osmium­(III), <b>2</b><sup><b>+</b></sup> and <b>2</b><sup><b>‑</b></sup>, are generated by constant-potential electrolysis. However, <b>2</b><sup>+</sup> ion is unstable in solution and slowly converts to <b>3</b> and partially hydrolyzes to <i>trans-</i>[Os<sup>III</sup>(PQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>2</b><sub><b>PQ</b></sub>), a PQ<sup>•–</sup> analogue of <b>2</b>. Conversion of <b>2</b><sup>+</sup> → <b>3</b> in solution excludes the formation of aryl halide as an intermediate for this unique ortho-metalation reaction at 295 K, where PIQ acts as a redox-noninnocent ambidentate ligand. In the complexes, the PIQ<sup>•–</sup> state where the atomic spin is more localized on the nitrogen atom is stable and is more abundant. The reaction of <b>2</b><sub><b>PQ</b></sub>, with I<sub>2</sub> does not promote any ortho-metalation reaction and yields a PQ complex of type <i>trans-</i>[Os<sup>III</sup>(PQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup>I<sub>5</sub><sup>–</sup>·2CH<sub>2</sub>Cl<sub>2</sub> (<b>5</b><sup>+</sup>I<sub>5</sub><sup>–</sup>·2CH<sub>2</sub>Cl<sub>2</sub>). The molecular and electronic structures of <b>1</b>–<b>4</b>, <b>6</b>, <b>1</b><sup>+</sup>, and <b>5</b><sup>+</sup> were established by different spectra, single-crystal X-ray bond parameters, cyclic voltammetry, and DFT calculations

    Molecular and Electronic Structures of Ruthenium Complexes Containing an ONS-Coordinated Open-Shell π Radical and an Oxidative Aromatic Ring Cleavage Reaction

    No full text
    The coordination chemistry of 2,4-di-<i>tert</i>-butyl-6-[(2-mercaptophenyl)­amino]­phenol (L<sub>ONS</sub>H<sub>3</sub>), which was isolated as a diaryl disulfide form, (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub>, with a Ru ion is disclosed. It was established that the trianionic L<sub>ONS</sub><sup>3–</sup> is redox-noninnocent and undergoes oxidation to either a closed-shell singlet (CSS), L<sub>ONS</sub><sup>–</sup>, or an open-shell π-radical state, L<sub>ONS</sub><sup>•2–</sup>, and the reactivities of the [Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)] and [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)] states are different. The reaction of (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub> with [Ru­(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] in toluene in the presence of PPh<sub>3</sub> affords a ruthenium complex of the type <i>trans</i>-[Ru­(L<sub>ONS</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>1</b>), while the similar reaction with [Ru­(PPh<sub>3</sub>)<sub>3</sub>(H)­(CO)­Cl] yields a L<sub>ONS</sub><sup>•2–</sup> complex of ruthenium­(II) of the type <i>trans</i>-[Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)] (<b>2</b>). <b>1</b> is a resonance hybrid of the [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­Cl] and [Ru<sup>III</sup>(L<sub>ONS</sub><sup>•2–</sup>)­Cl] states. It is established that <b>2</b> incorporating an open-shell π-radical state, [Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(CO)], reacts with an in situ generated superoxide ion and promotes an oxidative aromatic ring cleavage reaction, yielding a α-<i>N</i>-arylimino-ω-ketocarboxylate (L<sub>NS</sub><sup>2–</sup>) complex of the type [Ru<sup>II</sup>(L<sub>NS</sub><sup>2–</sup>)­(PPh<sub>3</sub>)­(CO)]<sub>2</sub> (<b>4</b>), while <b>1</b> having a CSS state, [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­Cl], is inert in similar conditions. Notably, <b>2</b> does not react with O<sub>2</sub> molecule but reacts with KO<sub>2</sub> in the presence of excess PPh<sub>3</sub>, affording <b>4</b>. The redox reaction of (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub> with [Ru­(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] in ethanol in air is different, leading to the oxidation of L<sub>ONS</sub> to a quinone sulfoxide derivative (L<sub>ONSO</sub><sup>0</sup>) as in <i>cis</i>-[Ru<sup>II</sup>(L<sub>ONSO</sub><sup>0</sup>)­(PPh<sub>3</sub>)­Cl<sub>2</sub>] (<b>3</b>), via <b>1</b> as an intermediate. The molecular and electronic structures of <b>1</b>–<b>4</b> were established by single-crystal X-ray crystallography, electron paramagnetic resonance spectroscopy, electrochemical measurements, and density functional theory calculations. <b>1</b><sup>+</sup> is a resonance hybrid of [Ru<sup>III</sup>(L<sub>ONS</sub><sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl ↔ Ru<sup>IV</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> states, <b>2</b><sup>–</sup> is a L<sub>ONS</sub><sup>3–</sup> complex of ruthenium­(II), [Ru<sup>II</sup>(L<sub>ONS</sub><sup>3–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)]<sup>−</sup>, and <b>2</b><sup>+</sup> is a ruthenium­(II) complex of L<sub>ONS</sub><sup>–</sup> of the type [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)]<sup>+</sup>, where 35% diradical character of the L<sub>ONS</sub><sup>–</sup> ligand was predicted

    Molecular and Electronic Structures of Ruthenium Complexes Containing an ONS-Coordinated Open-Shell π Radical and an Oxidative Aromatic Ring Cleavage Reaction

    No full text
    The coordination chemistry of 2,4-di-<i>tert</i>-butyl-6-[(2-mercaptophenyl)­amino]­phenol (L<sub>ONS</sub>H<sub>3</sub>), which was isolated as a diaryl disulfide form, (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub>, with a Ru ion is disclosed. It was established that the trianionic L<sub>ONS</sub><sup>3–</sup> is redox-noninnocent and undergoes oxidation to either a closed-shell singlet (CSS), L<sub>ONS</sub><sup>–</sup>, or an open-shell π-radical state, L<sub>ONS</sub><sup>•2–</sup>, and the reactivities of the [Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)] and [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)] states are different. The reaction of (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub> with [Ru­(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] in toluene in the presence of PPh<sub>3</sub> affords a ruthenium complex of the type <i>trans</i>-[Ru­(L<sub>ONS</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>1</b>), while the similar reaction with [Ru­(PPh<sub>3</sub>)<sub>3</sub>(H)­(CO)­Cl] yields a L<sub>ONS</sub><sup>•2–</sup> complex of ruthenium­(II) of the type <i>trans</i>-[Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)] (<b>2</b>). <b>1</b> is a resonance hybrid of the [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­Cl] and [Ru<sup>III</sup>(L<sub>ONS</sub><sup>•2–</sup>)­Cl] states. It is established that <b>2</b> incorporating an open-shell π-radical state, [Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(CO)], reacts with an in situ generated superoxide ion and promotes an oxidative aromatic ring cleavage reaction, yielding a α-<i>N</i>-arylimino-ω-ketocarboxylate (L<sub>NS</sub><sup>2–</sup>) complex of the type [Ru<sup>II</sup>(L<sub>NS</sub><sup>2–</sup>)­(PPh<sub>3</sub>)­(CO)]<sub>2</sub> (<b>4</b>), while <b>1</b> having a CSS state, [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­Cl], is inert in similar conditions. Notably, <b>2</b> does not react with O<sub>2</sub> molecule but reacts with KO<sub>2</sub> in the presence of excess PPh<sub>3</sub>, affording <b>4</b>. The redox reaction of (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub> with [Ru­(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] in ethanol in air is different, leading to the oxidation of L<sub>ONS</sub> to a quinone sulfoxide derivative (L<sub>ONSO</sub><sup>0</sup>) as in <i>cis</i>-[Ru<sup>II</sup>(L<sub>ONSO</sub><sup>0</sup>)­(PPh<sub>3</sub>)­Cl<sub>2</sub>] (<b>3</b>), via <b>1</b> as an intermediate. The molecular and electronic structures of <b>1</b>–<b>4</b> were established by single-crystal X-ray crystallography, electron paramagnetic resonance spectroscopy, electrochemical measurements, and density functional theory calculations. <b>1</b><sup>+</sup> is a resonance hybrid of [Ru<sup>III</sup>(L<sub>ONS</sub><sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl ↔ Ru<sup>IV</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> states, <b>2</b><sup>–</sup> is a L<sub>ONS</sub><sup>3–</sup> complex of ruthenium­(II), [Ru<sup>II</sup>(L<sub>ONS</sub><sup>3–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)]<sup>−</sup>, and <b>2</b><sup>+</sup> is a ruthenium­(II) complex of L<sub>ONS</sub><sup>–</sup> of the type [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)]<sup>+</sup>, where 35% diradical character of the L<sub>ONS</sub><sup>–</sup> ligand was predicted
    corecore