1 research outputs found

    Mechanically Tunable Curcumin Incorporated Polyurethane Hydrogels as Potential Biomaterials

    No full text
    We report here on the one-pot synthesis and characterization of curcumin incorporated polyethylene glycol–polyurethane (PU-CUR) hydrogels using PEG-4000, 4, 4′-methylenebis (cyclohexyl isocyanate), curcumin in the presence of a cross-linker, 1,2,6 hexanetriol (HT). Besides the physical entrapment, curcumin also provides a partial cross-linking in the 3-D structure of the hydrogel. The degree of swelling in hydrogels could be controlled by varying the amount of HT as well as curcumin. The structural characterization of hydrogels was performed using Fourier transform infrared spectroscopy, high-resolution mass spectrometry, UV and fluorescence spectroscopy. The wide-angle X-ray scattering studies revealed the existence of crystalline domains of PEG, and the small-angle X-ray scattering studies showed the presence of lamellar microstructures. Porous structure in the hydrogel was created by cryogenic treatment and lyophilization. Scanning electron microscopy and microcomputed tomography imaging of hydrogels showed the presence of interconnected pores. The mechanical strength of the hydrogels was measured using a universal testing machine. The observed tensile and breaking compression strengths for the equilibrium swollen gels were found to be in the range of 0.22–0.73 MPa and 1.65–4.6 MPa, respectively. Detailed in vitro biological experiments showed the biocompatibility of gels, cytostatic dosage of curcumin, selective toxicity toward cancer cell lines, and antibacterial property. These gels show promising applications as scaffolds and implants in tissue engineering
    corecore