16 research outputs found

    Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy

    Get PDF
    The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor (MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signaling and with heterodimerization between activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors

    Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4

    No full text
    Background Checkpoint inhibitors (CPIs) such as anti-PD(L)-1 and anti-CTLA-4 antibodies have resulted in unprecedented rates of antitumor responses and extension of survival of patients with a variety of cancers. But some patients fail to respond or initially respond but later relapse as they develop resistance to immune therapy. One of the tumor-extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells (Treg) in tumors. In preclinical and clinical studies, it has been suggested that tumor trafficking of Treg is mediated by CC chemokine receptor 4 (CCR4). Over 90% of human Treg express CCR4 and migrate toward CCL17 and CCL22, two major CCR4 ligands that are either high at baseline or upregulated in tumors on CPI treatment. Hence, CCR4 antagonism has the potential to be an effective antitumor treatment by reducing the accumulation of Treg into the tumor microenvironment (TME).Methods We developed in vitro and in vivo models to assess Treg migration and antitumor efficacy using a potent and selective CCR4 antagonist, CCR4-351. We used two separate tumor models, Pan02 and CT26 mouse tumors, that have high and low CCR4 ligand expression, respectively. Tumor growth inhibition as well as the frequency of tumor-infiltrating Treg and effector T cells was assessed following the treatment with CCR4 antagonist alone or in combination with CPI.Results Using a selective and highly potent, novel small molecule inhibitor of CCR4, we demonstrate that migration of CCR4+ Treg into the tumor drives tumor progression and resistance to CPI treatment. In tumor models with high baseline levels of CCR4 ligands, blockade of CCR4 reduced the number of Treg and enhanced antitumor immune activity. Notably, in tumor models with low baseline level of CCR4 ligands, treatment with immune CPIs resulted in significant increases of CCR4 ligands and Treg numbers. Inhibition of CCR4 reduced Treg frequency and potentiated the antitumor effects of CPIs.Conclusion Taken together, we demonstrate that CCR4-dependent Treg recruitment into the tumor is an important tumor-extrinsic mechanism for immune resistance. Blockade of CCR4 led to reduced frequency of Treg and resulted in increased antitumor activity, supporting the clinical development of CCR4 inhibitors in combination with CPI for the treatment of cancer.Statement of significance CPI upregulates CCL17 and CCL22 expression in tumors and increases Treg migration into the TME. Pharmacological antagonism of the CCR4 receptor effectively inhibits Treg recruitment and results in enhanced antitumor efficacy either as single agent in CCR4 ligandhigh tumors or in combination with CPIs in CCR4 ligandlow tumors

    JAK-STAT Pathway Activation in Malignant and Non-Malignant Cells Contributes to MPN Pathogenesis and Therapeutic Response

    No full text
    The presence of JAK-STAT pathway mutations1-5 in myeloproliferative neoplasm (MPN) patients led to clinical trials of JAK kinase inhibitors, including the JAK1/2 inhibitor ruxolitinib6,7. Ruxolitinib therapy reduces splenomegaly and systemic symptoms in myelofibrosis (MF) and is associated with an improvement in overall survival8-10, however the mechanisms by which JAK inhibitors achieve clinical benefit in MF have not been delineated. MPN patients present with increased levels of circulating pro-inflammatory cytokines, and the increase in systemic cytokines is reversed with JAK inhibitor therapy11,12. We therefore sought to delineate the mechanisms by which JAK inhibitors attenuate cytokine production in MF. Here we show that JAK inhibition inhibits cytokine production in malignant and non-malignant cells. Single cell proteomic profiling demonstrated that hematopoietic cells from MF mice produce a spectrum of inflammatory cytokines. Pan-hematopoietic Stat3 deletion improved survival, reduced disease severity, and reduced cytokine secretion, with efficacy similar to that observed with ruxolitinib therapy. By contrast, restricting loss of Stat3 to the malignant clone did not reduce disease severity or cytokine production in vivo. Consistent with these findings, we found that both malignant and non-malignant cells secrete inflammatory cytokines, and that JAK inhibition reduces cytokine production from both tumor and non-tumor populations. Our results demonstrate that JAK-STAT3 mediated cytokine production from malignant and non-malignant cells contributes to MPN pathogenesis and that inhibition of JAK-STAT signaling in both populations is required for therapeutic efficacy

    JAK–STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response

    No full text
    The identification of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) led to the clinical development of JAK kinase inhibitors, including ruxolitinib. Ruxolitinib reduces splenomegaly and systemic symptoms in myelofibrosis (MF) and improves overall survival; however the mechanism by which JAK inhibitors achieve efficacy has not been delineated. MPN patients present with increased levels of circulating pro-inflammatory cytokines, which are mitigated by JAK inhibitor therapy. We sought to elucidate mechanisms by which JAK inhibitors attenuate cytokine-mediated pathophysiology. Single cell profiling demonstrated that hematopoietic cells from MF models and patient samples aberrantly secrete inflammatory cytokines. Pan-hematopoietic Stat3 deletion reduced disease severity and attenuated cytokine secretion, with similar efficacy as observed with ruxolitinib therapy. By contrast, Stat3 deletion restricted to MPN cells did not reduce disease severity or cytokine production. Consistent with these observations, we found that malignant and non-malignant cells aberrantly secrete cytokines and JAK inhibition reduces cytokine production from both populations
    corecore