15 research outputs found
Scheme for the preparation of the multi-particle entanglement in cavity QED
Here we present a quantum electrodynamics (QED) model involving a
large-detuned single-mode cavity field and identical two-level atoms. One
of its applications for the preparation of the multi-particle states is
analyzed. In addition to the Greenberger-Horne-Zeilinger (GHZ) state, the W
class states can also be generated in this scheme. The further analysis for the
experiment of the model of case is also presented by considering the
possible three-atom collision.Comment: 5 Pages, 1 Figure. Minor change
The brazilian Amaryllidaceae as a source of acetylcholinesterase inhibitory alkaloids
Nine Brazilian Amaryllidaceae species were studied for their alkaloid composition and acetylcholinesterase (AChE) inhibitory activity via GC-MS and a modified Ellman assay, respectively. A total of thirty-six alkaloids were identified in these plants, of which Hippeastrum papilio and H. glau-cescens exhibited the highest galanthamine content and the best IC50 values against AChE. Furthermore, Hippeastrum vittatum and Rhodophiala bifida also showed notable AChE inhibitory effects. X-ray crys-tallographic data for four galanthamine-type com-pounds revealed significant differences in the orientation of theN-methyl group, which are shown to be related to AChE inhibition
Influence of first morning urine volume, fasting blood glucose and glycosylated hemoglobin on first morning urinary albumin concentration
Über das Verhalten des freien und Ester-Cholesterins im Blute und in den Organen des Kaninchens bei künstlicher Gallenstauung
Acute mesenteric ischemia following lancehead snakebite: an unusual case report in the Northernmost Brazilian Amazon
Observation of <i>Bothrops atrox</i> Snake Envenoming Blister Formation from Five Patients: Pathophysiological Insights
In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds
Observation of Bothrops atrox Snake Envenoming Blister Formation from Five Patients: Pathophysiological Insights
In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds
Observation of Bothrops atrox Snake Envenoming Blister Formation from Five Patients: Pathophysiological Insights
In the Brazilian Amazon, Bothrops atrox snakebites are frequent, and patients develop tissue damage with blisters sometimes observed in the proximity of the wound. Antivenoms do not seem to impact blister formation, raising questions regarding the mechanisms underlying blister formation. Here, we launched a clinical and laboratory-based study including five patients who followed and were treated by the standard clinical protocols. Blister fluids were collected for proteomic analyses and molecular assessment of the presence of venom and antivenom. Although this was a small patient sample, there appeared to be a correlation between the time of blister appearance (shorter) and the amount of venom present in the serum (higher). Of particular interest was the biochemical identification of both venom and antivenom in all blister fluids. From the proteomic analysis of the blister fluids, all were observed to be a rich source of damage-associated molecular patterns (DAMPs), immunomodulators, and matrix metalloproteinase-9 (MMP-9), suggesting that the mechanisms by which blisters are formed includes the toxins very early in envenomation and continue even after antivenom treatment, due to the pro-inflammatory molecules generated by the toxins in the first moments after envenomings, indicating the need for local treatments with anti-inflammatory drugs plus toxin inhibitors to prevent the severity of the wounds.</jats:p
