6,396 research outputs found

    Quantum Tomography

    Get PDF
    This is the draft version of a review paper which is going to appear in "Advances in Imaging and Electron Physics"Comment: To appear in "Advances in Imaging and Electron Physics". Some figs with low resolutio

    Maximum-likelihood method in quantum estimation

    Get PDF
    The maximum-likelihood method for quantum estimation is reviewed and applied to the reconstruction of density matrix of spin and radiation as well as to the determination of several parameters of interest in quantum optics.Comment: 12 pages, 4 figure

    Failed tidal disruption events and X-ray flares from the Galactic Centre

    Get PDF
    The process of tidal disruption of stars by a supermassive black hole provides luminous UV and soft X-ray flares with peak luminosities of 481046 erg\u2009s 121 and duration of a few months. As part of a wider exploration of the effects of stellar rotation on the outcome of a TDE, we have performed hydrodynamical simulations of the disruption of a rotating star whose spin axis is opposite to the orbital axis. Such a retrograde rotation makes the star more resilient to tidal disruption, so that, even if its orbit reaches the formal tidal radius, it actually stays intact after the tidal encounter. However, the outer layers of the star are initially stripped away from the core, but then fall back on to the star itself, producing a newly formed accretion disc around the star. We estimate that the accretion rate on to the star would be strongly super-Eddington (for the star) and would result in an X-ray flare with luminosity of the order of 481040 erg\u2009s 121 and duration of a few months. We speculate that such events might be responsible for the known X-ray flares from Sgr A* in the recent past

    Improving information/disturbance and estimation/distortion trade-offs with non universal protocols

    Get PDF
    We analyze in details a conditional measurement scheme based on linear optical components, feed-forward loop and homodyne detection. The scheme may be used to achieve two different tasks. On the one hand it allows the extraction of information with minimum disturbance about a set of coherent states. On the other hand, it represents a nondemolitive measurement scheme for the annihilation operator, i.e. an indirect measurement of the Q-function. We investigate the information/disturbance trade-off for state inference and introduce the estimation/distortion trade-off to assess estimation of the Q-function. For coherent states chosen from a Gaussian set we evaluate both information/disturbance and estimation/distortion trade-offs and found that non universal protocols may be optimized in order to achieve better performances than universal ones. For Fock number states we prove that universal protocols do not exist and evaluate the estimation/distortion trade-off for a thermal distribution.Comment: 10 pages, 6 figures; published versio

    Two-mode heterodyne phase detection

    Get PDF
    We present an experimental scheme that achieves ideal phase detection on a two-mode field. The two modes aa and bb are the signal and image band modes of an heterodyne detector, with the field approaching an eigenstate of the photocurrent Z^=a+b†\hat{Z}=a+b^{\dag}. The field is obtained by means of a high-gain phase-insensitive amplifier followed by a high-transmissivity beam-splitter with a strong local oscillator at the frequency of one of the two modes.Comment: 3 pages, 1 figur

    Minimum error discrimination of Pauli channels

    Full text link
    We solve the problem of discriminating with minimum error probability two given Pauli channels. We show that, differently from the case of discrimination between unitary transformations, the use of entanglement with an ancillary system can strictly improve the discrimination, and any maximally entangled state allows to achieve the optimal discrimination. We also provide a simple necessary and sufficient condition in terms of the structure of the channels for which the ultimate minimum error probability can be achieved without entanglement assistance. When such a condition is satisfied, the optimal input state is simply an eigenstate of one of the Pauli matrices.Comment: 8 pages, no figure

    Physical realizations of quantum operations

    Full text link
    Quantum operations (QO) describe any state change allowed in quantum mechanics, such as the evolution of an open system or the state change due to a measurement. We address the problem of which unitary transformations and which observables can be used to achieve a QO with generally different input and output Hilbert spaces. We classify all unitary extensions of a QO, and give explicit realizations in terms of free-evolution direct-sum dilations and interacting tensor-product dilations. In terms of Hilbert space dimensionality the free-evolution dilations minimize the physical resources needed to realize the QO, and for this case we provide bounds for the dimension of the ancilla space versus the rank of the QO. The interacting dilations, on the other hand, correspond to the customary ancilla-system interaction realization, and for these we derive a majorization relation which selects the allowed unitary interactions between system and ancilla.Comment: 8 pages, no figures. Accepted for publication on Phys. Rev.

    Optimal estimation of group transformations using entanglement

    Full text link
    We derive the optimal input states and the optimal quantum measurements for estimating the unitary action of a given symmetry group, showing how the optimal performance is obtained with a suitable use of entanglement. Optimality is defined in a Bayesian sense, as minimization of the average value of a given cost function. We introduce a class of cost functions that generalizes the Holevo class for phase estimation, and show that for states of the optimal form all functions in such a class lead to the same optimal measurement. A first application of the main result is the complete proof of the optimal efficiency in the transmission of a Cartesian reference frame. As a second application, we derive the optimal estimation of a completely unknown two-qubit maximally entangled state, provided that N copies of the state are available. In the limit of large N, the fidelity of the optimal estimation is shown to be 1-3/(4N).Comment: 11 pages, no figure
    • …
    corecore