42 research outputs found

    Enterohemorrhagic Escherichia coli infection inhibits colonic thiamin pyrophosphate uptake via transcriptional mechanism.

    Get PDF
    Colonocytes possess a specific carrier-mediated uptake process for the microbiota-generated thiamin (vitamin B1) pyrophosphate (TPP) that involves the TPP transporter (TPPT; product of the SLC44A4 gene). Little is known about the effect of exogenous factors (including enteric pathogens) on the colonic TPP uptake process. Our aim in this study was to investigate the effect of Enterohemorrhagic Escherichia coli (EHEC) infection on colonic uptake of TPP. We used human-derived colonic epithelial NCM460 cells and mice in our investigation. The results showed that infecting NCM460 cells with live EHEC (but not with heat-killed EHEC, EHEC culture supernatant, or with non-pathogenic E. Coli) to lead to a significant inhibition in carrier-mediated TPP uptake, as well as in level of expression of the TPPT protein and mRNA. Similarly, infecting mice with EHEC led to a significant inhibition in colonic TPP uptake and in level of expression of TPPT protein and mRNA. The inhibitory effect of EHEC on TPP uptake by NCM460 was found to be associated with reduction in the rate of transcription of the SLC44A4 gene as indicated by the significant reduction in the activity of the SLC44A4 promoter transfected into EHEC infected cells. The latter was also associated with a marked reduction in the level of expression of the transcription factors CREB-1 and ELF3, which are known to drive the activity of the SLC44A4 promoter. Finally, blocking the ERK1/2 and NF-kB signaling pathways in NCM460 cells significantly reversed the level of EHEC inhibition in TPP uptake and TPPT expression. Collectively, these findings show, for the first time, that EHEC infection significantly inhibit colonic uptake of TPP, and that this effect appears to be exerted at the level of SLC44A4 transcription and involves the ERK1/2 and NF-kB signaling pathways

    Enterotoxigenic Escherichia coli CS6 gene products and their roles in CS6 structural protein assembly and cellular adherence

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) produces a variety of colonization factors necessary for attachment to the host cell, among which CS6 is one of the most prevalent in ETEC isolates from developing countries. The CS6 operon is composed of 4 genes, cssA, cssB, cssC, and cssD. The molecular mechanism of CS6 assembly and cell surface presentation, and the contribution of each protein to the attachment of the bacterium to intestinal cells remain unclear. In the present study, a series of css gene-deletion mutants of the CS6 operon were constructed in the ETEC genetic background, and their effect on adhesion to host cells and CS6 assembly was studied. Each subunit deletion resulted in a reduction in the adhesion to intestinal cells to the same level of laboratory E. coli strains, and this effect was restored by complementary plasmids, suggesting that the 4 proteins are necessary for CS6 expression. Bacterial cell fractionation and western blotting of the mutant strains suggested that the formation of a CssA–CssB–CssC complex is necessary for recognition by CssD and transport of CssA–CssB to the outer membrane as a colonization factor

    Hypoxia inhibits colonic uptake of the microbiota-generated forms of vitamin B1 via HIF-1α-mediated transcriptional regulation of their transporters

    Get PDF
    Hypoxia exerts profound effects on cell physiology, but its effect on colonic uptake of the microbiota-generated forms of vitamin B1 (i.e., thiamin pyrophosphate [TPP] and free thiamine) has not been described. Here, we used human colonic epithelial NCM460 cells and human differentiated colonoid monolayers as in vitro and ex vivo models, respectively, and were subjected to either chamber (1%

    Enterotoxigenic Escherichia coli heat-labile toxin drives enteropathic changes in small intestinal epithelia

    Get PDF
    Enterotoxigenic E. coli (ETEC) produce heat-labile (LT) and/or heat-stable (ST) enterotoxins, and commonly cause diarrhea in resource-poor regions. ETEC have been linked repeatedly to sequelae in children including enteropathy, malnutrition, and growth impairment. Although cellular actions of ETEC enterotoxins leading to diarrhea are well-established, their contributions to sequelae remain unclear. LT increases cellular cAMP to activate protein kinase A (PKA) that phosphorylates ion channels driving intestinal export of salt and water resulting in diarrhea. As PKA also modulates transcription of many genes, we interrogated transcriptional profiles of LT-treated intestinal epithelia. Here we show that LT significantly alters intestinal epithelial gene expression directing biogenesis of the brush border, the major site for nutrient absorption, suppresses transcription factors HNF4 and SMAD4 critical to enterocyte differentiation, and profoundly disrupts microvillus architecture and essential nutrient transport. In addition, ETEC-challenged neonatal mice exhibit substantial brush border derangement that is prevented by maternal vaccination with LT. Finally, mice repeatedly challenged with toxigenic ETEC exhibit impaired growth recapitulating the multiplicative impact of recurring ETEC infections in children. These findings highlight impacts of ETEC enterotoxins beyond acute diarrheal illness and may inform approaches to prevent major sequelae of these common infections including malnutrition that impact millions of children

    Identification and characterization of 5′-flanking region of the human riboflavin transporter 1 gene (SLC52A1)

    No full text
    The human SLC52A1 gene encodes the riboflavin transporter-1 (RFVT-1), a plasma membrane protein that transports vitamin B2 (riboflavin, RF) into cells, and thus, plays a role in controlling cellular homeostasis of RF in those tissues that express the carrier protein (e.g. placenta and intestine). Currently, there is nothing known about transcriptional regulation of the SLC52A1 gene, therefore, we aimed to clone and characterize its 5'-flanking region. Using rapid amplification of the cDNA ends (5'-RACE), we identified one transcription start site (TSS). A 579 bp segment of the 5'-flanking region of this gene was cloned which exhibited robust promoter activity upon transfection in human intestinal epithelial cells. Deletion analysis revealed that the core promoter activity to be embedded in a region between -234 and -23 that lacked TATA element, was GC-rich, and harbored several putative cis-regulatory sites including KLFs, AP-2, EGRF and Sp-1. Mutating each of these sites led to a significant decrease in promoter activity (which was highest for the Sp-1 site), suggesting their possible involvement in regulating SLC52A1 transcription. Focusing on the Sp-1 site, EMSA, super-shift and ChIP analysis was performed that established the interaction of the Sp-1 transcription factor with the SLC52A1 promoter; also, co-transfection of the minimal SLC52A1 promoter with an Sp-1 containing vector in Drosophila SL-2 cells led to significant promoter activation. These results are the first to reveal the identity of the minimal SLC52A1 promoter and to establish an important role for Sp-1 in its activity
    corecore