10 research outputs found

    The challenges of extract, transform and load (ETL) for data integration in near real-time environment

    Get PDF
    Organization with considerable investment into data warehousing, the influx of various data types and forms require certain ways of prepping data and staging platform that support fast, efficient and volatile data to reach its targeted audiences or users of different business needs. Extract, Transform and Load (ETL) system proved to be a choice standard for managing and sustaining the movement and transactional process of the valued big data assets. However, traditional ETL system can no longer accommodate and effectively handle streaming or near real-time data and stimulating environment which demands high availability, low latency and horizontal scalability features for functionality. This paper identifies the challenges of implementing ETL system for streaming or near real-time data which needs to evolve and streamline itself with the different requirements. Current efforts and solution approaches to address the challenges are presented. The classification of ETL system challenges are prepared based on near real-time environment features and ETL stages to encourage different perspectives for future research

    Developments in production of silica-based thermoluminescence dosimeters

    No full text
    This work addresses purpose-made thermoluminescence dosimeters (TLD) based on doped silica fibres and sol–gel nanoparticles, produced via Modified Chemical Vapour Deposition (MCVD) and wet chemistry techniques respectively. These seek to improve upon the versatility offered by conventional phosphor-based TLD forms such as that of doped LiF. Fabrication and irradiation-dependent factors are seen to produce defects of differing origin, influencing the luminescence of the media. In coming to a close, we illustrate the utility of Ge-doped silica media for ionizing radiation dosimetry, first showing results from gamma-irradiated Ag-decorated nanoparticles, in the particular instance pointing to an extended dynamic range of dose. For the fibres, at radiotherapy dose levels, we show high spatial resolution (0.1 mm) depth-dose results for proton irradiations. For novel microstructured fibres (photonic crystal fibres, PCFs) we show first results from a study of undisturbed and technologically modified naturally occurring radioactivity environments, measuring doses of some 10 s of μGy over a period of several months

    Latest developments in silica-based thermoluminescence spectrometry and dosimetry

    Get PDF
    Using irradiated doped-silica preforms from which fibres for thermoluminescence dosimetry applications can be fabricated we have carried out a range of luminescence studies, the TL yield of the fibre systems offering many advantages over conventional passive dosimetry types. In this paper we investigate such media, showing emission spectra for irradiated preforms and the TL response of glass beads following irradiation to an 241Am–Be neutron source located in a tank of water, the glass fibres and beads offering the advantage of being able to be placed directly into liquid. The outcomes from these and other lines of research are intended to inform development of doped silica radiation dosimeters of versatile utility, extending from environmental evaluations through to clinical and industrial applications

    Developments in production of silica-based thermoluminescence dosimeters

    No full text
    This work addresses purpose-made thermoluminescence dosimeters (TLD) based on doped silica fibres and sol–gel nanoparticles, produced via Modified Chemical Vapour Deposition (MCVD) and wet chemistry techniques respectively. These seek to improve upon the versatility offered by conventional phosphor-based TLD forms such as that of doped LiF. Fabrication and irradiation-dependent factors are seen to produce defects of differing origin, influencing the luminescence of the media. In coming to a close, we illustrate the utility of Ge-doped silica media for ionizing radiation dosimetry, first showing results from gamma-irradiated Ag-decorated nanoparticles, in the particular instance pointing to an extended dynamic range of dose. For the fibres, at radiotherapy dose levels, we show high spatial resolution (0.1 mm) depth-dose results for proton irradiations. For novel microstructured fibres (photonic crystal fibres, PCFs) we show first results from a study of undisturbed and technologically modified naturally occurring radioactivity environments, measuring doses of some 10 s of μGy over a period of several months

    New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes

    No full text
    corecore