7 research outputs found

    Associations among different functional and structural arterial wall properties and their relations to traditional cardiovascular risk factors in healthy subjects: a cross-sectional study

    Get PDF
    BACKGROUND: The arterial wall possesses several functional and structural properties that define arterial health. Once they become impaired, cardiovascular risk increases. We aimed to ascertain the pattern of correlations among different arterial wall properties and to explore their relations to traditional risk factors and cardiovascular risk stratification. To allow such an investigation a middle-aged healthy population was recruited. METHODS: This cross-sectional study included 100 healthy males (aged 41.9 ± 6.4 years). Pulse wave velocity (PWV), β-stiffness and intima-media thickness (IMT) of the carotid artery, and brachial artery flow-mediated dilation (FMD) were measured by a standardized ultrasound approach. RESULTS: No correlation between FMD and IMT was found; only relatively poor correlations between PWV (or β-stiffness) and FMD existed, as well as between PWV (or β-stiffness) and IMT. PWV and β-stiffness highly correlated. Unexpectedly, only weak associations between PWV, β-stiffness, FMD, IMT and traditional risk factors were revealed. Hence, traditional risk factors (mainly age) explained only 10-50% of variability for PWV, β-stiffness, FMD and IMT. Although the subjects had low cardiovascular risk according to their Framingham score, their arterial wall properties were already impaired, particularly FMD. CONCLUSIONS: In healthy middle-age males we found: i) absent or poor correlations among arterial stiffness, IMT and endothelial function; ii) a low impact of traditional risk factors on the studied variables, and iii) the presence of impaired arterial wall properties despite low calculated cardiovascular risk. These results provide a deepened understanding of arterial wall properties and could help to improve cardiovascular risk stratification

    Lipoprotein(a) and inflammation in patients with atrial fibrillation after electrical cardioversion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently few studies tried to confirm the association between AF and lipoprotein(a) (Lp(a)), however the results remained conflicted. In present study we evaluated the possible interaction between Lp(a), inflammatory state and echocardiographic characteristics in patients after successful electrical cardioversion (EC) of persistent AF. We also tried to investigate the role of Lp(a) as a possible prognostic factor for AF recurrence after successful EC.</p> <p>Results</p> <p>Data of 79 patients admitted due to planned EC was analyzed. After successful procedure patients were monitored for 2 years. For analytical purposes patients were divided in two groups according to AF recurrence. There was no significant difference between Lp(a) levels in both groups. We also didn't find any positive correlation between Lp(a) and CRP levels, as well as between Lp(a) levels and left atrium diameter. For logistic and survival analysis optimal cut-off value of Lp(a) ≥ 0.32 (upper quartile) was used. In logistic regression model with AF recurrence as dependent variable Lp(a) didn't show any statistically significant association with AF recurrence. Survival analysis showed slightly higher AF recurrence rate in group with higher Lp(a) levels but not to the level of statistical significance (log rank test, <it>p </it>= 0.62).</p> <p>Conclusions</p> <p>We weren't able to confirm the association between Lp(a) levels and AF recurrence, inflammation and left atrium diameter in patients after successful EC of persistent AF. Further studies are needed to elucidate the role of Lp(a) in this clinical setting.</p

    The Role of MicroRNAs in Endothelial Cell Senescence

    No full text
    Cellular senescence is a complex, dynamic process consisting of the irreversible arrest of growth and gradual deterioration of cellular function. Endothelial senescence affects the cell’s ability to repair itself, which is essential for maintaining vascular integrity and leads to the development of endothelial dysfunction, which has an important role in the pathogenesis of cardiovascular diseases. Senescent endothelial cells develop a particular, senescence-associated secretory phenotype (SASP) that detrimentally affects both surrounding and distant endothelial cells, thereby facilitating the ageing process and development of age-related disorders. Recent studies highlight the role of endothelial senescence and its dysfunction in the pathophysiology of several age-related diseases. MicroRNAs are small noncoding RNAs that have an important role in the regulation of gene expression at the posttranscriptional level. Recently, it has been discovered that miRNAs could importantly contribute to endothelial cell senescence. Overall, the research focus has been shifting to new potential mechanisms and targets to understand and prevent the structural and functional changes in ageing senescent endothelial cells in order to prevent the development and limit the progression of the wide spectrum of age-related diseases. The aim of this review is to provide some insight into the most important pathways involved in the modulation of endothelial senescence and to reveal the specific roles of several miRNAs involved in this complex process. Better understanding of miRNA’s role in endothelial senescence could lead to new approaches for prevention and possibly also for the treatment of endothelial cells ageing and associated age-related diseases

    The Role of MicroRNAs in Endothelial Cell Senescence

    No full text
    Cellular senescence is a complex, dynamic process consisting of the irreversible arrest of growth and gradual deterioration of cellular function. Endothelial senescence affects the cell&rsquo;s ability to repair itself, which is essential for maintaining vascular integrity and leads to the development of endothelial dysfunction, which has an important role in the pathogenesis of cardiovascular diseases. Senescent endothelial cells develop a particular, senescence-associated secretory phenotype (SASP) that detrimentally affects both surrounding and distant endothelial cells, thereby facilitating the ageing process and development of age-related disorders. Recent studies highlight the role of endothelial senescence and its dysfunction in the pathophysiology of several age-related diseases. MicroRNAs are small noncoding RNAs that have an important role in the regulation of gene expression at the posttranscriptional level. Recently, it has been discovered that miRNAs could importantly contribute to endothelial cell senescence. Overall, the research focus has been shifting to new potential mechanisms and targets to understand and prevent the structural and functional changes in ageing senescent endothelial cells in order to prevent the development and limit the progression of the wide spectrum of age-related diseases. The aim of this review is to provide some insight into the most important pathways involved in the modulation of endothelial senescence and to reveal the specific roles of several miRNAs involved in this complex process. Better understanding of miRNA&rsquo;s role in endothelial senescence could lead to new approaches for prevention and possibly also for the treatment of endothelial cells ageing and associated age-related diseases

    Clinical efficacy and safety of a new 1000-mg suspension versus twice-daily 500-mg tablets of MPFF in patients with symptomatic chronic venous disorders: a randomized controlled trial

    No full text
    BACKGROUND: Chronic venous disorders (CVD) is estimated to affect 30% to 50% of women and 10% to 30% of men. The most widely prescribed treatment for CVD worldwide is micronized purified flavonoid fraction 500 mg (MPFF). The aim of this clinical trial was to develop a new once daily 1000-mg oral suspension of MPFF
    corecore