193 research outputs found

    Checking and Enforcing Security through Opacity in Healthcare Applications

    Full text link
    The Internet of Things (IoT) is a paradigm that can tremendously revolutionize health care thus benefiting both hospitals, doctors and patients. In this context, protecting the IoT in health care against interference, including service attacks and malwares, is challenging. Opacity is a confidentiality property capturing a system's ability to keep a subset of its behavior hidden from passive observers. In this work, we seek to introduce an IoT-based heart attack detection system, that could be life-saving for patients without risking their need for privacy through the verification and enforcement of opacity. Our main contributions are the use of a tool to verify opacity in three of its forms, so as to detect privacy leaks in our system. Furthermore, we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for enforcing opacity

    Recent Progress in Beam-Based Metal Additive Manufacturing from a Materials Perspective: A Review of Patents

    Get PDF
    Over the last decade, the enormous potential of metal additive manufacturing (AM) processes has led these technologies to establish their position in many industries. Much effort is being made toward their widespread application; however, much remains to be done to achieve full industrialization of these processes. Therefore, many companies, research centers and universities are investing in comprehensive research and development activities in order to further promote the industrialization of metal AM. This review traces the progress of metal AM technologies through an investigation of patents. In the present study, beam-based metal AM patents were searched through the Orbit Intelligence database. First, the number of patents per year was studied, indicating that, as expected, there is strong growth in AM patenting activities. The patents were afterward examined in order to highlight the key players in the field, and it was found that the main players investing in this market are: multidisciplinary companies, AM machine producers, end users working, especially in the aerospace sector, universities and research centers. The patents were then analyzed to understand the technology domains covered by each key player and their trend of investments. Finally, the patents in the field of Materials and Metallurgy were studied individually to identify the main topics faced by the most used alloy classes: Al-, Ni- and Ti-based alloys and steels. The extensive study of these patents clearly indicated that the main gaps to fill in metal AM are strongly material dependent and that it is possible to find correlations between the alloy classes, their main industrial applications and their specific AM processability issues. The current study provides insights into global trends that can help industrial markets to identify the right investment direction and research to identify topics for future investigation

    Ti-6Al-4V lattice structures produced by EBM: Heat treatment and mechanical properties

    Get PDF
    Additive manufacturing (AM) processes allow producing the complex components in a layerwise fashion. The complexity includes the design of lighter and stronger components by using lattice structures that can be quickly realized through AM technologies. However, the mechanical behaviour of lattice structures is not completely known, especially in the post-treated state. Thus, this work aims to explore the effect of post-treatment on the compressive strength of specimens with lattice structures. The samples are produced using Ti-6Al-4V powder processed by Electron Beam Melting (EBM). The outcomes of this work confirm the correlation between the heat treatment and final mechanical properties

    Critical Features in the Microstructural Analysis of AISI 316L Produced By Metal Additive Manufacturing

    Get PDF
    Directed energy deposition (DED) process is recognized as an alternative technology to produce the complex-shape AISI 316L components. The critical production step in this technology is the optimization of process parameters that can directly affect the final properties of the components. To optimize the process parameters, the residual defects of specimens produced with different combinations of process parameters are evaluated, and the optimum condition is chosen. Therefore, the residual defects assessment is a vital step in finding the optimum process parameters; therefore, this evaluation should be carried out carefully. One of the main issues in the production of AISI 316L by DED process is oxidation during the process that should be considered besides the other defects such as porosity and cracks. However, the identification between the oxides and porosities is not an easy task, and so this study aims to provide more clear insight into the evaluation of pores and oxides in DED 316L samples. The outcomes of this work show that at the best process parameters suitable for a porosity-free sample, there are some oxides that can be misinterpreted as porosity and consequently deteriorate the mechanical properties of the dense sample

    Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus

    Get PDF
    The discovery of a family of membrane water channel proteins called aquaporins, and the finding that aquaporin 1 was located in the choroid plexus, has prompted interest in the role of aquaporins in cerebrospinal fluid (CSF) production and consequently hydrocephalus. While the role of aquaporin 1 in choroidal CSF production has been demonstrated, the relevance of aquaporin 1 to the pathophysiology of hydrocephalus remains debated. This has been further hampered by the lack of a non-toxic specific pharmacological blocking agent for aquaporin 1. In recent times aquaporin 4, the most abundant aquaporin within the brain itself, which has also been shown to have a role in brain water physiology and relevance to brain oedema in trauma and tumours, has become an alternative focus of attention for hydrocephalus research. This review summarises current knowledge and concepts in relation to aquaporins, specifically aquaporin 1 and 4, and hydrocephalus. It also examines the relevance of aquaporins as potential therapeutic targets in hydrocephalus and other CSF circulation disorders

    Iodination of human thyroglobulin (Tg) alters its immunoreactivity. II. Fine specificity of a monoclonal antibody that recognizes iodinated Tg

    No full text
    In a previous investigation, we found that murine MoAb 42C3, raised against human Tg, recognized Tg differently depending upon its level of iodination of Tg. A possible explanation for this finding is that iodine is directly involved with the specific epitope recognized by MoAb 42C3. In the present study, we report that the binding of MoAb 42C3 to iodinated Tg is inhibited by T4, T3, reverse T3 (rT3), triiodothyroacetic acid (triac), diiodothyronine (T2), diiodotyrosine (DIT), but not by thyronine (T0) or tyrosine. The order of inhibition of these iodinated compounds is T4 > T3 > rT3 > triac > T2 > DIT. The MoAb 42C3 does not have the same specificity as the T3, T4-receptor since the order of binding of these iodinated compounds on the receptor differed from the order of their inhibition of this MoAb. Monoclonal antibody 42C3 also recognized non-iodinated Tg that was subsequently iodinated in vitro. It failed to recognize another protein, bovine serum albumin, that was iodinated in vitro by the same method. These results suggest that iodinated tyrosines and thyronines determine the binding specificity of MoAb 42C3. The inhibitory effects of these compounds on MoAb 42C3 depend on their iodine content as well as location of iodine in the aromatic ring

    Isolation of proteins related to the Rh polypeptides from nonhuman erythrocytes.

    Get PDF
    It is thought that the Rh antigens may be important in maintaining normal erythrocyte membrane integrity. Despite their name, Rh antigens are serologically present only on human erythrocytes. Rh structural polymorphisms are known to reside within a family of nonglycosylated Mr 32,000 integral membrane proteins that can be purified by hydroxylapatite chromatography. Mr 32,000 integral membrane proteins were purified similarly from erythrocyte membrane vesicles prepared from rhesus monkeys, cows, cats, and rats, but could not be purified from human Rhmod erythrocytes, a rare syndrome lacking Rh antigens. The purified Mr 32,000 polypeptides were labeled with 125I, digested with chymotrypsin, and found to be 30-60% identical to human Rh polypeptides when compared by two-dimensional iodopeptide mapping. The physiologic function of the Rh polypeptides remains to be identified; however, the existence of related proteins in nonhuman erythrocytes supports the concept that the Rh polypeptides are erythrocyte membrane components of fundamental significance

    Polymorphism in the Mr 32,000 Rh protein purified from Rh(D)-positive and -negative erythrocytes.

    Get PDF
    A Mr 32,000 integral membrane protein has previously been identified on erythrocytes bearing the Rh(D) antigen and is thought to contain the antigenic variations responsible for the different Rh phenotypes. To study it on a biochemical level, a simple large-scale method was developed to purify the Mr 32,000 Rh protein from multiple units of Rh(D)-positive and -negative blood. Erythrocyte membrane vesicles were solubilized in NaDodSO4, and a tracer of immunoprecipitated 125I surface-labeled Rh protein was added. The Rh protein was purified to homogeneity by hydroxylapatite chromatography followed by preparative NaDodSO4/PAGE. Approximately 25 nmol of pure Rh protein was recovered from each unit of Rh(D)-positive and -negative blood. Rh protein purified from both Rh phenotypes appeared similar by one-dimensional NaDodSO4/PAGE, and the N-terminal amino acid sequences for the first 20 residues were identical. Rh proteins purified from Rh(D)-positive and -negative blood were compared by two-dimensional iodopeptide mapping after 125I-labeling and alpha-chymotrypsin digestion. The peptide maps were very similar; however, at least two additional iodopeptides were consistently noted in the Rh proteins purified from Rh(D)-positive erythrocytes. These data indicate that a similar core Rh protein (or group of related proteins) exists in both Rh(D)-positive and -negative erythrocytes, and the Rh proteins from erythrocytes with different Rh phenotypes contain distinct structural polymorphisms
    corecore