49 research outputs found

    Cytokine Overproduction, T-Cell Activation, and Defective T-Regulatory Functions Promote Nephritis in Systemic Lupus Erythematosus

    Get PDF
    Lupus nephritis (LN) occurs in more than one-third of patients with systemic lupus erythematosus. Its pathogenesis is mostly attributable to the glomerular deposition of immune complexes and overproduction of T helper- (Th-) 1 cytokines. In this context, the high glomerular expression of IL-12 and IL-18 exerts a major pathogenetic role. These cytokines are locally produced by both macrophages and dendritic cells (DCs) which attract other inflammatory cells leading to maintenance of the kidney inflammation. However, other populations including T-cells and B-cells are integral for the development and worsening of renal damage. T-cells include many pathogenetic subsets, and the activation of Th-17 in keeping with defective T-regulatory (Treg) cell function regards as further event contributing to the glomerular damage. These populations also activate B-cells to produce nephritogenic auto-antibodies. Thus, LN includes a complex pathogenetic mechanism that involves different players and the evaluation of their activity may provide an effective tool for monitoring the onset of the disease

    Case Report: Lymphocytosis Associated With Fatal Hepatitis in a Thymoma Patient Treated With Anti-PD1: New Insight Into the Immune-Related Storm

    Get PDF
    Recent advances in tumor immunotherapy have made it possible to efficiently unleash immune effectors, reacting against neoplastic cells. Although these approaches primarily aim to eradicate malignancy, immune-related adverse events (irAEs) often influence patients’ prognosis, constituting a new spectrum of side effects. Taking into account the typical microenvironment and the intricate equilibrium between the anti-tumor response and the immune cells, the thymoma constitutes a unicum in the immune-oncology field. We report a fatal immune-mediated adverse events’ storm in a thymoma patient treated with Pembrolizumab, leading to hepatotoxicity accompanied by lymphocytosis, thrombocytopenia, and thyroid dysfunction, unveiling a novel potential pathophysiological effect of immunotherapy. The clinical proficiency of the immune checkpoint inhibitors in thymoma patients warrants timely prevention and management of off-target consequences in order to optimize this promising therapeutic option. This case report describes a unique consequence of irAEs, emerging as a red flag warranting a multidisciplinary approach

    Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma

    Get PDF
    Background: The immunotherapy with immune checkpoints inhibitors (ICI) has changed the life expectancy in metastatic melanoma (MM) patients. Nevertheless, several patients do not respond hence, the identifcation and validation of novel biomarkers of response to ICI is of crucial importance. Circulating extracellular vesicles (EVs) such as PD-L1+ EV mediate resistance to anti-PD1, instead the role of PD1+ EV is not fully understood. Methods: We isolated the circulating EVs from the plasma of an observational cohort study of 71 metastatic melanoma patients and correlated the amount of PD-L1+ EVs and PD1+ EVs with the response to ICI. The analysis was performed according to the origin of EVs from the tumor and the immune cells. Subsequently, we analysed the data in a validation cohort of 22 MM patients to assess the reliability of identifed EV-based biomarkers. Additionally we assessed the involvement of PD1+ EVs in the seizure of nivolumab and in the perturbation of immune cells-mediated killing of melanoma spheroids. Results: The level of PD-L1+ EVs released from melanoma and CD8+ T cells and that of PD1+ EVs irrespective of the cellular origin were higher in non-responders. The Kaplan-Meier curves indicated that higher levels of PD1+ EVs were signifcantly correlated with poorer progression-free survival (PFS) and overall survival (OS). Signifcant correlations were found for PD-L1+ EVs only when released from melanoma and T cells. The multivariate analysis showed that high level of PD1+ EVs, from T cells and B cells, and high level of PD-L1+ EVs from melanoma cells, are independent biomarkers of response. The reliability of PD-L1+ EVs from melanoma and PD1+ EVs from T cells in predicting PFS was confrmed in the validation cohort through the univariate Cox-hazard regression analysis. Moreover we discovered that the circulating EVs captured nivolumab and reduced the T cells trafcking and tumor spheroids killing. Conclusion: Our study identifed circulating PD1+ EVs as driver of resistance to anti-PD1, and highlighted that the analysis of single EV population by liquid biopsy is a promising tool to stratify MM patients for immunotherapy

    Cervical cancer benefits from trabectedin combination with the β-blocker propranolol: in vitro and ex vivo evaluations in patient-derived organoids

    Get PDF
    Background: Cervical cancer (CC) is characterized by genomic alterations in DNA repair genes, which could favor treatment with agents causing DNA double-strand breaks (DSBs), such as trabectedin. Hence, we evaluated the capability of trabectedin to inhibit CC viability and used ovarian cancer (OC) models as a reference. Since chronic stress may promote gynecological cancer and may hinder the efficacy of therapy, we investigated the potential of targeting β-adrenergic receptors with propranolol to enhance trabectedin efficacy and change tumor immunogenicity.Methods: OC cell lines, Caov-3 and SK-OV-3, CC cell lines, HeLa and OV2008, and patient-derived organoids were used as study models. MTT and 3D cell viability assays were used for drug(s) IC50 determination. The analysis of apoptosis, JC-1 mitochondrial membrane depolarization, cell cycle, and protein expression was performed by flow cytometry. Cell target modulation analyses were carried out by gene expression, Western blotting, immunofluorescence, and immunocytochemistry.Results: Trabectedin reduced the proliferation of both CC and OC cell lines and notably of CC patient-derived organoids. Mechanistically, trabectedin caused DNA DSBs and S-phase cell cycle arrest. Despite DNA DSBs, cells failed the formation of nuclear RAD51 foci and underwent apoptosis. Under norepinephrine stimulation, propranolol enhanced trabectedin efficacy, further inducing apoptosis through the involvement of mitochondria, Erk1/2 activation, and the increase of inducible COX-2. Notably, trabectedin and propranolol affected the expression of PD1 in both CC and OC cell lines.Conclusion: Overall, our results show that CC is responsive to trabectedin and provide translational evidence that could benefit CC treatment options. Our study pointed out that combined treatment offset trabectedin resistance caused by β-adrenergic receptor activation in both ovarian and cervical cancer models

    Ocular toxicity in metastatic melanoma patients treated with mitogen-activated protein kinase kinase inhibitors: A case series

    No full text
    Purpose To report the clinical features and management of mitogen-activated protein kinase kinase inhibitor-associated ocular side effects in 4 patients with advanced melanoma and a review of literature. Design Interventional case series. Methods Four patients with advanced cutaneous melanoma were treated with a mitogen-activated protein kinase kinase (MEK) inhibitor as single therapy or together with a v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor. All patients underwent ophthalmologic examinations at regular intervals or as needed, including visual acuity, intraocular pressure, external eye examination, and funduscopy. When pathologic findings were found, patients underwent visual field examination, optical coherence tomography (OCT), and/or fluorescein angiography. Ocular toxicity was assessed and handled according to the Common Terminology Criteria for Adverse Events. Results Ocular adverse events appeared early in the treatment. In 3 patients OCT revealed subfoveal neuroretinal elevation, often asymptomatic, also after discontinuation and re-starting of MEK inhibitor. Vascular injury appeared in 2 patients, in 1 case associated with a visual field defect reduced after discontinuation of the drug and use of systemic therapy. In 1 case an inflammatory reaction was observed in the anterior chamber. Visual symptoms were usually mild and short-lived. Conclusions MEK inhibitor as a single agent or in combination with BRAF inhibitor induces transient retinopathy with time-dependent recurrence and usually mild visual symptoms. Vascular injuries can be observed and their management is essential in clinical practice. It is important to investigate all previous ocular disorders, systemic conditions, and pharmacologic interactions of MEK inhibitor that could facilitate the onset of associated ocular effects

    The next generation of metastatic melanoma: Uncovering the genetic variants for anti-BRAF therapy response

    No full text
    Metastatic melanoma (MM) is a highly aggressive cancer with a median overall survival of 6-9 months, notwithstanding the numerous efforts in development of new therapeutic approaches. To this aim we tested the clinical applicability of the Ion Torrent Personal Genome Machine to simultaneously screen MM patients in order to individuate new or already known SNPs and mutations able to predict the duration of response to BRAF inhibitors. An Ampliseq Custom Panel, including 11 crucial full length genes involved in melanoma carcinogenesis and therapy response pathways, was created and used to analyze 25 MM patients. We reported BRAFV600 and NRASQ61 mutations in 68% and 24% of samples, respectively. Moreover, we more frequently identified the following alterations related to BRAF status: PIK3CAI391M (44%) and KITD737N (36%) mutations, CTLA4T17A (52%), MC1RV60L (32%) and MITFS473A (60%) polymorphisms. Considering the progression free survival (PFS), statistical analyses showed that BRAFV600 patients without any of these more frequent alterations had a higher median PFS. Protein structure changes seem to be due to these variants by in silico analysis. In conclusion, a Next-Generation Sequencing approach with custom panel may provide new information to evaluate tumor-specific therapeutic susceptibility and individual prognosis to improve the care of MM patients

    Melanoma Brain Metastases: A Retrospective Analysis of Prognostic Factors and Efficacy of Multimodal Therapies

    No full text
    Abstract: Brain metastasis in cutaneous melanoma (CM) has historically been considered to be a dismal prognostic feature, although recent evidence has highlighted the intracranial activity of combined immunotherapy (IT). Herein, we completed a retrospective study to investigate the impact of clinical–pathological features and multimodal therapies on the overall survival (OS) of CM patients with brain metastases. A total of 105 patients were evaluated. Nearly half of the patients developed neurological symptoms leading to a negative prognosis (p = 0.0374). Both symptomatic and asymptomatic patients benefited from encephalic radiotherapy (eRT) (p = 0.0234 and p = 0.011). Lactate dehydrogenase (LDH) levels two times higher than the upper limit normal (ULN) at the time of brain metastasis onset was associated with poor prognosis (p = 0.0452) and identified those patients who did not benefit from eRT. Additionally, the poor prognostic role of LDH levels was confirmed in patients treated with targeted therapy (TT) (p = 0.0015) concerning those who received immunotherapy (IT) (p = 0.16). Based on these results, LDH levels higher than two times the ULN at the time of the encephalic progression identify those patients with a poor prognosis who did not benefit from eRT. The negative prognostic role of LDH levels on eRT observed in our study will require prospective evaluations
    corecore