90 research outputs found
Vitamin A: too good to be bad?
Vitamin A is a micronutrient important for vision, cell growth, reproduction and immunity. Both deficiency and excess consuming of vitamin A cause severe health consequences. Although discovered as the first lipophilic vitamin already more than a century ago and the definition of precise biological roles of vitamin A in the setting of health and disease, there are still many unresolved issues related to that vitamin. Prototypically, the liver that plays a key role in the storage, metabolism and homeostasis of vitamin A critically responds to the vitamin A status. Acute and chronic excess vitamin A is associated with liver damage and fibrosis, while also hypovitaminosis A is associated with alterations in liver morphology and function. Hepatic stellate cells are the main storage site of vitamin A. These cells have multiple physiological roles from balancing retinol content of the body to mediating inflammatory responses in the liver. Strikingly, different animal disease models also respond to vitamin A statuses differently or even opposing. In this review, we discuss some of these controversial issues in understanding vitamin A biology. More studies of the interactions of vitamin A with animal genomes and epigenetic settings are anticipated in the future
Recent advances in understanding liver fibrosis: bridging basic science and individualized treatment concepts [version 1; referees: 2 approved]
Hepatic fibrosis is characterized by the formation and deposition of excess fibrous connective tissue, leading to progressive architectural tissue remodeling. Irrespective of the underlying noxious trigger, tissue damage induces an inflammatory response involving the local vascular system and the immune system and a systemic mobilization of endocrine and neurological mediators, ultimately leading to the activation of matrix-producing cell populations. Genetic disorders, chronic viral infection, alcohol abuse, autoimmune attacks, metabolic disorders, cholestasis, alterations in bile acid composition or concentration, venous obstruction, and parasite infections are well-established factors that predispose one to hepatic fibrosis. In addition, excess fat and other lipotoxic mediators provoking endoplasmic reticulum stress, alteration of mitochondrial function, oxidative stress, and modifications in the microbiota are associated with non-alcoholic fatty liver disease and, subsequently, the initiation and progression of hepatic fibrosis. Multidisciplinary panels of experts have developed practice guidelines, including recommendations of preferred therapeutic approaches to a specific cause of hepatic disease, stage of fibrosis, or occurring co-morbidities associated with ongoing loss of hepatic function. Here, we summarize the factors leading to liver fibrosis and the current concepts in anti-fibrotic therapies
Comparative evaluation of gene delivery devices in primary cultures of rat hepatic stellate cells and rat myofibroblasts
BACKGROUND: The hepatic stellate cell is the primary cell type responsible for the excessive formation and deposition of connective tissue elements during the development of hepatic fibrosis in chronically injured liver. Culturing quiescent hepatic stellate cells on plastic causes spontaneous activation leading to a myofibroblastic phenotype similar to that seen in vivo. This provides a simple model system for studying activation and transdifferentiation of these cells. The introduction of exogenous DNA into these cells is discussed controversially mainly due to the lack of systematic analysis. Therefore, we examined comparatively five nonviral, lipid-mediated gene transfer methods and adenoviral based infection, as potential tools for efficient delivery of DNA to rat hepatic stellate cells and their transdifferentiated counterpart, i.e. myofibroblasts. Transfection conditions were determined using enhanced green fluorescent protein as a reporter expressed under the transcriptional control of the human cytomegalovirus immediate early gene 1 promoter/enhancer. RESULTS: With the use of chemically enhanced transfection methods, the highest relative efficiency was obtained with FuGENE™6 gene mediated DNA transfer. Quantitative evaluation of representative transfection experiments by flow cytometry revealed that approximately 6% of the rat hepatic stellate cells were transfected. None of the transfection methods tested was able to mediate gene delivery to rat myofibroblasts. To analyze if rat hepatic stellate cells and myofibroblasts are susceptible to adenoviral infection, we have inserted the transgenic expression cassette into a recombinant adenoviral type 5 genome as replacement for the E1 region. Viral particles of this replication-deficient Ad5-based reporter are able to infect 100% of rat hepatic stellate cells and myofibroblasts, respectively. CONCLUSIONS: Our results indicate that FuGENE™6-based methods may be optimized sufficiently to offer a feasible approach for gene transfer into rat hepatic stellate cells. The data further demonstrate that adenoviral mediated transfer is a promising approach for gene delivery to these hepatic cells
Электропривод питателя сырого концентрата
Объект исследований - электропривод питателя.
Цель работы – модернизация электропривода шнекового питателя сырого концентрата с использованием имеющегося оборудования.Object of researches - the feeder electric drive.
The work purpose – upgrade of the electric drive of the screw feeder of a crude concentrate with use of the available equipment
Recent Advances in Practical Methods for Liver Cell Biology: A Short Overview
Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany
The Cape Gooseberry Constituent Physalin B Ameliorates Nonalcoholic Steatohepatitis and Attenuates Liver Fibrosis
Physalin B belongs to a family of Physalins that can be isolated from the genus Physalis (Solanaceae). In traditional Chinese Medicine, Physalis angulata L. is frequently used to treat a variety of illnesses such as dermatitis, trachitis, rheumatism, and hepatitis. Physalin B promotes cellular apoptosis and has antitumor, antimalarial, and antimycobacterial activities. Two recent studies evaluated the therapeutic activities of Physalin B in pre-clinical hepatic disease models. In this comment, a brief summary of the most important findings of these two studies is given and discussed
Laser Ablation Inductively Coupled Plasma Spectrometry: Metal Imaging in Experimental and Clinical Wilson Disease
Wilson disease is an inherited disorder caused by mutations in the ATP7B gene resulting in copper metabolism disturbances. As a consequence, copper accumulates in different organs with most common presentation in liver and brain. Chelating agents that nonspecifically chelate copper, and promote its urinary excretion, or zinc salts interfering with the absorption of copper from the gastrointestinal tract, are current medications. Also gene therapy, restoring ATP7B gene function or trials with bis-choline tetrathiomolybdate (WTX101) removing excess copper from intracellular hepatic copper stores and increasing biliary copper excretion, is promising in reducing body’s copper content. Therapy efficacy is mostly evaluated by testing for evidence of liver disease and neurological symptoms, hepatic synthetic functions, indices of copper metabolisms, urinary copper excretions, or direct copper measurements. However, several studies conducted in patients or Wilson disease models have shown that not only the absolute concentration of copper, but also its spatial distribution within the diseased tissue is relevant for disease severity and outcome. Here we discuss laser ablation inductively coupled plasma spectrometry imaging as a novel method for accurate determination of trace element concentrations with high diagnostic sensitivity, spatial resolution, specificity, and quantification ability in experimental and clinical Wilson disease specimens
Current Status in Testing for Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH)
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries with almost 25% affected adults worldwide. The growing public health burden is getting evident when considering that NAFLD-related liver transplantations are predicted to almost double within the next 20 years. Typically, hepatic alterations start with simple steatosis, which easily progresses to more advanced stages such as nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. This course of disease finally leads to end-stage liver disease such as hepatocellular carcinoma, which is associated with increased morbidity and mortality. Although clinical trials show promising results, there is actually no pharmacological agent approved to treat NASH. Another important problem associated with NASH is that presently the liver biopsy is still the gold standard in diagnosis and for disease staging and grading. Because of its invasiveness, this technique is not well accepted by patients and the method is prone to sampling error. Therefore, an urgent need exists to find reliable, accurate and noninvasive biomarkers discriminating between different disease stages or to develop innovative imaging techniques to quantify steatosis
Effects of Probiotics on Gut Microbiota: An Overview
The role of probiotics in regulating intestinal flora to enhance host immunity has recently received widespread attention. Altering the human gut microbiota may increase the predisposition to several disease phenotypes such as gut inflammation and metabolic disorders. The intestinal microbiota converts dietary nutrients into metabolites that serve as biologically active molecules in modulating regulatory functions in the host. Probiotics, which are active microorganisms, play a versatile role in restoring the composition of the gut microbiota, helping to improve host immunity and prevent intestinal disease phenotypes. This comprehensive review provides firsthand information on the gut microbiota and their influence on human health, the dietary effects of diet on the gut microbiota, and how probiotics alter the composition and function of the human gut microbiota, along with their corresponding effects on host immunity in building a healthy intestine. We also discuss the implications of probiotics in some of the most important human diseases. In summary, probiotics play a significant role in regulating the gut microbiota, boosting overall immunity, increasing the abundance of beneficial bacteria, and helping ameliorate the symptoms of multiple diseases
- …