984 research outputs found

    The Expedition PS133/2 of the Research Vessel POLARSTERN to the Scotia Sea in 2022

    Get PDF

    Expedition Programme 133/2

    Get PDF

    Enhanced olivine weathering in permeable sandy sediments from the North Sea – a laboratory study using flow-through reactors

    Get PDF
    The Earth’s climate is increasingly warming due to ongoing anthropogenic carbon dioxide (CO2) emissions. In order to mitigate the human-made climate change and to meet the Paris Agreement goals of limiting the warming below 2°C, active carbon dioxide removal (CDR) from the atmosphere is of great importance in addition to massive CO2 emission reductions. A possible CDR method is rock weathering and the associated dissolution of minerals in the ocean, which leads to marine alkalinity enhancement and, thus, an enhanced flux of CO2 from the atmosphere into the ocean. In the framework of the project RETAKE, a consortium of the German Marine Research Alliance (DAM) research mission CDRmare, we investigate the potential, feasibility and side effects of olivine dissolution in high-energy coastal environments where strong currents and advection of seawater through permeable sediments have been proposed to accelerate weathering of silicate rocks. Here, we present data from laboratory experiments with flow-through reactors that are filled with permeable sandy sediments from the North Sea amended with different amounts and grain sizes of olivine. Permeable sediments are generally characterized by advective pore-water flow. Under advective conditions, higher weathering rates than those found in diffusion-controlled depositional settings are expected since the reaction products are rapidly removed and the formation of authigenic mineral coatings on olivine grains is prevented. The flow-through experiments are conducted under oxic conditions whereby air-saturated natural seawater is continuously pumped through the reactors. In addition to the permanent measurement of oxygen, pH and temperature, the circulating water is regularly sampled and alkalinity, dissolved inorganic carbon, major cation and trace metal (e.g., nickel) concentrations are analyzed. Preliminary results indicate an increase in alkalinity up to 3.2 mM in the reactor with the largest amount of olivine while the alkalinity in the control reactor (without olivine addition) is close to background seawater concentrations of 2.3 mM. Similarly, highest dissolved nickel concentrations were found in the reactor with highest olivine contents added. In order to detect and characterize secondary minerals that possibly formed, the sediment/olivine mixtures are sampled after completion of the experiments and analyzed with respect to the mineralogical and chemical composition

    The iron “redox battery” in sandy sediments: Its impact on organic matter remineralization and phosphorus cycling

    Get PDF
    Permeable sandy sediments cover 50-60% of the global continental shelf and are important bioreactors that regulate organic matter (OM) turnover and nutrient cycling in the coastal ocean. In sands, the dynamic porewater advection can cause rapid mass transfer and variable redox conditions, thus affecting OM remineralization pathways as well as the recycling of iron and phosphorus. In this study, North Sea sands were incubated in flow-through reactors (FTRs) to investigate biogeochemical processes under porewater advection and changing redox conditions. We found that the average rate of anaerobic OM remineralization was 12 times lower than the aerobic pathway, and Fe(III) oxyhydroxides were found as the major electron acceptors during 34 days of anoxic incubation. Abundant reduced Fe in the solid phase (expressed as Fe(II)) was measured before extensive Fe2+ release into porewater, and most of the reduced Fe (~96%) remained in the solid phase throughout the anoxic incubation. Fe(II) retained in the solid phase, either through the formation of authigenic Fe(II)-bearing minerals or adsorption, was easily re-oxidized upon exposure to O2 . Excessive P release (apart from OM remineralization) started at the beginning of the anoxic incubation and accelerated after the release of Fe2+ with a constant P/Fe2+ ratio of 0.26. After 34 days of anoxic incubation, porewater was re-oxygenated and >99% of released P was coprecipitated through Fe2+ oxidation (so-called “Fe2+ curtain”). Our results demonstrate that Fe(III)/Fe(II) in the solid phase can serve as relatively immobile and rechargeable “redox battery” under dynamic porewater advection. Due to frequent oscillation of redox conditions, the Fe “redox battery” is characteristic for permeable sediments and plays an important role in coastal OM turnover. We also suggest that P liberated before Fe2+ release can escape the “Fe2+ curtain” in porewater advection, thus potentially increasing net benthic P efflux from permeable sediments under variable redox conditions

    Fe isotopes revealing mineral-specific redox cycling in sediments

    Get PDF
    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and cause a diffusive flux of dissolved Fe2+ towards the sediment-water interface. The partitioning of sedimentary Fe has traditionally been studied by applying sequential extractions. We modified an existing leaching method [1] in order to enable ÎŽ56Fe measurements on specific Fe mineral fractions. Those are siderite/sorbed Fe, ferrihydrite/lepidocrocite, goethite/hematite, and magnetite. The selectivity of extractions was tested by leaching pairs of 58Fe-spiked and unspiked synthetic minerals. Insignificant amounts of goethite and hematite are dissolved in hydroxylamine-HCl targetting ferrihydrite/lepidocrocite. The determination of reducible oxides leached by dithionite was found to be slightly compromised in presence of magnetite. Removal of extraction matrix was achieved by repetitive oxidation, heating, Fe precipitation, and column separation. The new method was applied to a short sediment core from the North Sea. Downcore mineral-specific variations in ÎŽ56Fe revealed differing contributions of Fe oxides to redox cycling. Acetic acid soluble Fe and ferrihydrite/lepidocrocite-Fe showed increasing ÎŽ56Fe values with depth in accordance with progressive dissimilatory iron reduction (DIR). Low ÎŽ56Fe in acetic acid soluble Fe relative to ferric hydrous oxide-Fe is consistent with the fractionation pattern between sorbed Fe(II) and ferric substrate during DIR experiments [2]. Goethite/hematite-and magnetite-Fe do not show ÎŽ56Fe trends with depth. The results demonstrate the importance of ÎŽ56Fe analysis on individual Fe fractions that differ in origin and reactivity. The developed procedure provides a basis for specific Fe isotope studies in past and present environments that undergo or underwent redox changes. [1] Poulton and Canfield (2005), Chemical Geology 214, 209-221. [2] Crosby et al., Geobiology 5 (2007), 169-189

    Data report: solid-phase major and minor elements and iron and sulfur species in sediments of the Anholt Basin, Baltic Sea, collected during IODP Expedition 347

    Get PDF
    In this report, we present bulk solid-phase major and minor element contents and Fe and S species in sediments from Site M0060 in the Anholt Basin recovered during Integrated Ocean Drilling Program Expedition 347 to the Baltic Sea. Site M0060 is characterized by alternating sand- and clay-/silt-dominated sediment sequences that indicate deposition under brackish-marine and limnic conditions, respectively. We use Al-normalized elemental ratios and transition metal data to characterize the different sediment sequences and to study the impact of early diagenetic processes on the abundance and reactivity of Fe oxide and Fe sulfide mineral phases across lithologic boundaries. Ratios of Fe/Al and Mn/Al exceed the continental crustal average in the clay-/silt-dominated sequences, whereas low ratios are associated with the sandy units. About 10%–20% of the total bulk Fe content is associated with Fe oxides and Fe sulfides, whereas the major Fe fraction is bound in clay minerals. The transition metals (V, Ni, Cr, and Co) correlate with the depth profile of Fe/Al, which indicates that they are adsorbed onto Fe oxides and concomitantly deposited. Sequential leaching reveals that magnetite is the most abundant Fe oxide phase. Leached contents approach 1 wt% followed by crystalline and easily reducible Fe oxides. Pyrite is the dominant Fe sulfide phase and is enriched at several lithologic boundaries that can likely be associated with the formation of pyrite. Pyrite is formed through the reaction of Fe monosulfides with (1) polysulfides and/or S0 in zones dominated by organoclastic sulfate and Fe oxide reduction and (2) sulfide released during the anaerobic oxidation of methane

    Radiocarbon dating of methane

    Get PDF
    Methane (CH4) is the most abundant organic compound in the atmosphere and its influence on the global climate is subject to widespread and ongoing scientific discussion. Two sources of atmospheric methane are the release of methane from the ocean seafloor, as well as from thawing permafrost. In recent years the origin, sediment and water column processes and subsequent pathways of methane have received growing interest in the scientific community. 13C/12C ratio measurements can be used to determine the methane source (biogenic or thermogenic), but potential formation/alteration processes by microbes are not yet fully understood. Radiocarbon analysis can help to understand these carbon cycling processes. The presented method is a novel approach for the radiocarbon age determination of methane. A modified PreConn is used to separate methane from other gases such as CO2 in a gaseous sample. Afterwards, the purified methane is transferred to a furnace and oxidized to CO2. Subsequently, produced CO2 is concentrated on a custom-made zeolite trap, which can be connected to a novel sampling unit implemented into the GIS system (by Ionplus AG) for direct CO2 measurements on a MICADAS. The zeolite trap has Œ“ quick-fit connectors (Swagelok) that allow to detach the trap from the oxidation unit and to re-attach it in the GIS. Initial testing showed minimal blank carbon incorporation associated with sample storage, transfer and handling of the custom-build zeolite trap. Here we will present the setup of the method, first results of the blank determination as well as precision of common standard gases

    Benthic element cycling on the Antarctic shelf and its potential control by sea ice cover

    Get PDF
    Antarctic shelf regions are potential carbon and nutrient cycling hotspots where rapid climatic changes are projected to affect seasonal sea ice cover, water column stratification, and thus surface primary production and associated fluxes of organic carbon to the seafloor. Here, we report on surface sediment oxygen profiles and respective fluxes in combination with pore water profiles of dissolved iron (DFe) and phosphate (PO43-) from 7 stations along a 400 mile transect with variable sea ice cover and water column stratification from the East Antarctic Peninsula to the west of South Orkney Islands. Our results show that sea ice concentrations and stratification of the upper water column decreased across the transect. We defined a marginal sea ice index of 5-35% sea ice cover which was positively correlated with the benthic carbon mineralization rate. C-mineralization rates increased gradually between the heavy ice-covered station and the marginal sea ice stations from 1.1 to 7.3 mmol C m-2 d-1, respectively. The rates decreased again to 1.8 mmol C m-2 d-1 at the ice-free station, likely attributed to a deeper water column mixed layer depth, which decreases primary production and thus organic carbon export to the sediment. Iron cycling in the sediment was elevated at the marginal sea ice stations where Fe-reduction led to DFe fluxes in the pore water of up to 0.379 mmol DFe m-2 d-1, while moderate (0.068 mmol DFe m-2 d-1) and negligible fluxes were observed at ice-free and ice-covered stations, respectively. In pore waters, concentrations of DFe and PO43- were significantly correlated with almost identical flux ratios of 0.33 mol PO43- per mol DFe for most of the stations, indicating a strong control of the iron cycling on the phosphate release to the water column. The high benthic DFe and PO43- fluxes highlight the importance of sediments underlying the marginal ice zone as source for limiting nutrients to the shelf waters

    Assessing global-scale organic matter reactivity patterns in marine sediments using a lognormal reactive continuum model

    Get PDF
    Organic matter (OM) degradation in marine sediments is largely controlled by its reactivity and profoundly affects the global carbon cycle. Yet, there is currently no general framework that can constrain OM reactivity on a global scale. In this study, we propose a reactive continuum model based on a lognormal distribution (l-RCM), where OM reactivity is fully described by parameters Ό (the mean reactivity of the initial OM bulk mixture) and σ (the variance of OM components around the mean reactivity). We use the l-RCM to inversely determine Ό and σ at 123 sites across the global ocean. The results show that the apparent OM reactivity (〈kâŒȘ=Ό⋅exp⁥(σ2/2)) decreases with decreasing sedimentation rate (ω) and that OM reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. Despite the general global trends, higher than expected OM reactivity is observed in certain ocean regions characterized by great water depth or pronounced oxygen minimum zones, such as the eastern–western coastal equatorial Pacific and the Arabian Sea, emphasizing the complex control of the depositional environment (e.g., OM flux, oxygen content in the water column) on benthic OM reactivity. Notably, the l-RCM can also highlight the variability in OM reactivity in these regions. Based on inverse modeling results in our dataset, we establish the significant statistical relationships between 〈kâŒȘ and ω and further map the global OM reactivity distribution. The novelty of this study lies in its unifying view but also in contributing a new framework that allows predicting OM reactivity in data-poor areas based on readily available (or more easily obtainable) information. Such a framework is currently lacking and limits our abilities to constrain OM reactivity in global biogeochemical or Earth system models
    • 

    corecore