15 research outputs found

    Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice

    Get PDF
    The combinations of genetic alterations that cooperate with von Hippel-Lindau (VHL) mutation to cause clear cell renal cell carcinoma (ccRCC) remain poorly understood. We show that the TP53 tumour suppressor gene is mutated in approximately 9% of human ccRCCs. Combined deletion of Vhl and Trp53 in primary mouse embryo fibroblasts causes proliferative dysregulation and high rates of aneuploidy. Deletion of these genes in the epithelium of the kidney induces the formation of simple cysts, atypical cysts and neoplasms, and deletion in the epithelia of the genital urinary tract leads to dysplasia and tumour formation. Kidney cysts display a reduced frequency of primary cilia and atypical cysts and neoplasms exhibit a pro-proliferative signature including activation of mTORC1 and high expression of Myc, mimicking several cellular and molecular alterations seen in human ccRCC and its precursor lesions. As the majority of ccRCC is associated with functional inactivation of VHL, our findings suggest that for a subset of ccRCC, loss of p53 function represents a critical event in tumour development

    Vhl deletion in renal epithelia causes HIF-1α-dependent, HIF- 2α-independent angiogenesis and constitutive diuresis

    Full text link
    One of the earliest requirements for the formation of a solid tumor is the establishment of an adequate blood supply. Clear cell renal cell carcinomas (ccRCC) are highly vascularized tumors in which the earliest genetic event is most commonly the biallelic inactivation of the VHL tumor suppressor gene, leading to constitutive activation of the HIF-1α and HIF-2α transcription factors, which are known angiogenic factors. However it remains unclear whether either or both HIF-1α or HIF-2α stabilization in normal renal epithelial cells are necessary or sufficient for alterations in blood vessel formation. We show that renal epithelium-specific deletion of Vhl in mice causes increased medullary vascularization and that this phenotype is completely rescued by Hif1a co-deletion, but not by co-deletion of Hif2a. A physiological consequence of changes in the blood vessels of the vasa recta in Vhl-deficient mice is a diabetes insipidus phenotype of excretion of large amounts of highly diluted urine. This constitutive diuresis is fully compensated by increased water consumption and mice do not show any signs of dehydration, renal failure or salt wasting and blood electrolyte levels remain unchanged. Co-deletion of Hif1a, but not Hif2a, with Vhl, fully restored kidney morphology and function, correlating with the rescue of the vasculature. We hypothesize that the increased medullary vasculature alters salt uptake from the renal interstitium, resulting in a disruption of the osmotic gradient and impaired urinary concentration. Taken together, our study characterizes a new mouse model for a form of diabetes insipidus and non-obstructive hydronephrosis and provides new insights into the physiological and pathophysiological effects of HIF-1α stabilization on the vasculature in the kidney

    Evidence of renal angiomyolipoma neoplastic stem cells arising from renal epithelial cells

    Get PDF
    Renal angiomyolipomas (AML) contain an admixture of clonal tumour cells with features of several different mesenchymal lineages, implying the existence of an unidentified AML neoplastic stem cell. Biallelic inactivation of TSC2 or TSC1 is believed to represent the driving event in these tumours. Here we show that TSC2 knockdown transforms senescence-resistant cultured mouse and human renal epithelial cells into neoplastic stem cells that serially propagate renal AML-like tumours in mice. mTOR inhibitory therapy of mouse AML allografts mimics the clinical responses of human renal AMLs. Deletion of Tsc1 in mouse renal epithelia causes differentiation in vivo into cells expressing characteristic AML markers. Human renal AML and a renal AML cell line express proximal tubule markers. We describe the first mouse models of renal AML and provide evidence that these mesenchymal tumours originate from renal proximal tubule epithelial cells, uncovering an unexpected pathological differentiation plasticity of the proximal tubule

    cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo

    No full text
    This study aimed to assess the role of cAMP target sequences enhancer cAMP response element (enhCRE) and cAMP and overlapping negative response element (CNRE) in the control of human renin gene (REN) in vivo. enhCRE and CNRE were silenced by mutations in a 12.2-kb human renin promoter fused to LacZ reporter gene. This construct was used to generate transgenic mice (RENMut-LacZ). The expression of the transgene was correctly targeted to the juxtaglomerular portions of renal afferent arterioles which express endogenous mouse renin. Therefore, enhCRE and CNRE do not seem to be relevant for the control of the cell-specific expression of the human renin gene. The β-adrenoreceptor agonist isoproterenol (10 mg/kg/day, for 2 days) stimulated the endogenous renin, but not the LacZ mRNA expression. Treatment of RENMut-LacZ mice with the angiotensin converting enzyme inhibitor (enalapril 10 mg/kg/day, for 7 days) or their crossing to angiotensin receptor type 1a knockout mice led to increased renin and LacZ mRNA levels. Renin expression was upregulated by low-salt diet (0.03% NaCl, for 10 days) and downregulated by high-salt diet (4% NaCl, for 10 days). In contrast, low-salt diet did not influence, while high-salt diet inhibited the expression of LacZ. In summary, enhCRE and CNRE appear to be necessary for the transactivation of the human renin gene through β-adrenoreceptors and by low-salt diet. Our data also suggest that different intracellular mechanisms mediate the effect of low- and high-salt intake on renin expression in vivo

    Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice

    Full text link
    Clear cell renal cell carcinomas (ccRCCs) frequently exhibit inactivation of the von Hippel-Lindau tumor-suppressor gene, VHL, and often harbor multiple copy-number alterations in genes that regulate cell cycle progression. We show here that modeling these genetic alterations by combined deletion of Vhl, Trp53 and Rb1 specifically in renal epithelial cells in mice caused ccRCC. These tumors arose from proximal tubule epithelial cells and shared molecular markers and mRNA expression profiles with human ccRCC. Exome sequencing revealed that mouse and human ccRCCs exhibit recurrent mutations in genes associated with the primary cilium, uncovering a mutational convergence on this organelle and implicating a subset of ccRCCs as genetic ciliopathies. Different mouse tumors responded differently to standard therapies for advanced human ccRCC, mimicking the range of clinical behaviors in the human disease. Inhibition of hypoxia-inducible factor (HIF)-α transcription factors with acriflavine as third-line therapy had therapeutic effects in some tumors, providing preclinical evidence for further investigation of HIF-α inhibition as a ccRCC treatment. This autochthonous mouse ccRCC model represents a tool to investigate the biology of ccRCC and to identify new treatment strategies

    Formation of renal cysts and tumors in Vhl/Trp53-deficient mice requires HIF-1α and HIF-2α

    Full text link
    The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in the majority of clear cell renal cell carcinomas (ccRCC), but genetic ablation of Vhl alone in mouse models is insufficient to recapitulate human tumorigenesis. One function of pVHL is to regulate the stability of the hypoxia-inducible factors (HIF), which become constitutively activated in the absence of pVHL. In established ccRCC, HIF-1α has been implicated as a renal tumor suppressor, whereas HIF-2α is considered an oncoprotein. In this study, we investigated the contributions of HIF-1α and HIF-2α to ccRCC initiation in the context of Vhl deficiency. We found that deleting Vhl plus Hif1a or Hif2a specifically in the renal epithelium did not induce tumor formation. However, HIF-1α and HIF-2α differentially regulated cell proliferation, mitochondrial abundance and oxidative capacity, glycogen accumulation, and acquisition of a clear cell phenotype in Vhl-deficient renal epithelial cells. HIF-1α, but not HIF-2α, induced Warburg-like metabolism characterized by increased glycolysis, decreased oxygen consumption, and decreased ATP production in mouse embryonic fibroblasts, providing insights into the cellular changes potentially occurring in Vhl mutant renal cells before ccRCC formation. Importantly, deletion of either Hif1a or Hif2a completely prevented the formation of renal cysts and tumors in Vhl/Tp53 mutant mice. These findings argue that both HIF-1α and HIF-2α exert pro-tumorigenic functions during the earliest stages of cyst and tumor formation in the kidney

    Model output for the likelihood of keel bone fractures occurring.

    No full text
    <p><sup>†</sup> For this analysis, the category in the `Ref`column serves as the reference from which the other category is compared against (Hybird ISA vs. DW; Perch type soft vs. hard).</p><p>Model output for the likelihood of keel bone fractures occurring.</p
    corecore