132 research outputs found

    Complex Network Modelling of Origin–Destination Commuting Flows for the COVID-19 Epidemic Spread Analysis in Italian Lombardy Region

    Get PDF
    Currently the whole world is affected by the COVID-19 disease. Italy was the first country to be seriously affected in Europe, where the first COVID-19 outbreak was localized in the Lombardy region. The further spreading of the cases led to the lockdown of the most affected regions in northern Italy and then the entire country. In this work we investigated an epidemic spread scenario in the Lombardy region by using the origin–destination matrix with information about the commuting flows among 1450 urban areas within the region. We performed a large-scale simulation-based modeling of the epidemic spread over the networks related to three main motivations, i.e., work, study and occasional transfers to quantify the potential contribution of each category of travellers to the spread of the epidemic process. Our findings outline that the three networks are characterised by different weight dynamic growth rates and that the network "work" has a critical role in the diffusion phenomenon showing the greatest contribution to the epidemic spread

    Predicting brain age with complex networks: From adolescence to adulthood.

    Get PDF
    In recent years, several studies have demonstrated that machine learning and deep learning systems can be very useful to accurately predict brain age. In this work, we propose a novel approach based on complex networks using 1016 T1-weighted MRI brain scans (in the age range 7-64years). We introduce a structural connectivity model of the human brain: MRI scans are divided in rectangular boxes and Pearson's correlation is measured among them in order to obtain a complex network model. Brain connectivity is then characterized through few and easy-to-interpret centrality measures; finally, brain age is predicted by feeding a compact deep neural network. The proposed approach is accurate, robust and computationally efficient, despite the large and heterogeneous dataset used. Age prediction accuracy, in terms of correlation between predicted and actual age r=0.89and Mean Absolute Error MAE =2.19years, compares favorably with results from state-of-the-art approaches. On an independent test set including 262 subjects, whose scans were acquired with different scanners and protocols we found MAE =2.52. The only imaging analysis steps required in the proposed framework are brain extraction and linear registration, hence robust results are obtained with a low computational cost. In addition, the network model provides a novel insight on aging patterns within the brain and specific information about anatomical districts displaying relevant changes with aging

    Multi-Time-Scale Features for Accurate Respiratory Sound Classification

    Get PDF
    The COVID-19 pandemic has amplified the urgency of the developments in computer-assisted medicine and, in particular, the need for automated tools supporting the clinical diagnosis and assessment of respiratory symptoms. This need was already clear to the scientific community, which launched an international challenge in 2017 at the International Conference on Biomedical Health Informatics (ICBHI) for the implementation of accurate algorithms for the classification of respiratory sound. In this work, we present a framework for respiratory sound classification based on two different kinds of features: (i) short-term features which summarize sound properties on a time scale of tenths of a second and (ii) long-term features which assess sounds properties on a time scale of seconds. Using the publicly available dataset provided by ICBHI, we cross-validated the classification performance of a neural network model over 6895 respiratory cycles and 126 subjects. The proposed model reached an accuracy of 85%±3% and an precision of 80%±8%, which compare well with the body of literature. The robustness of the predictions was assessed by comparison with state-of-the-art machine learning tools, such as the support vector machine, Random Forest and deep neural networks. The model presented here is therefore suitable for large-scale applications and for adoption in clinical practice. Finally, an interesting observation is that both short-term and long-term features are necessary for accurate classification, which could be the subject of future studies related to its clinical interpretation

    Machine Learning for Cloud Detection of Globally Distributed Sentinel-2 Images

    Get PDF
    In recent years, a number of different procedures have been proposed for segmentation of remote sensing images, basing on spectral information. Model-based and machine learning strategies have been investigated in several studies. This work presents a comprehensive overview and an unbiased comparison of the most adopted segmentation strategies: Support Vector Machines (SVM), Random Forests, Neural networks, Sen2Cor, FMask and MAJA. We used a training set for learning and two different independent sets for testing. The comparison accounted for 135 images acquired from 54 different worldwide sites. We observed that machine learning segmentations are extremely reliable when the training and test are homogeneous. SVM performed slightly better than other methods. In particular, when using heterogeneous test data, SVM remained the most accurate segmentation method while state-of-the-art model-based methods such as MAJA and FMask obtained better sensitivity and precision, respectively. Therefore, even if each method has its specific advantages and drawbacks, SVM resulted in a competitive option for remote sensing applications

    Individual Topological Analysis of Synchronization-Based Brain Connectivity

    Get PDF
    Functional connectivity analysis aims at assessing the strength of functional coupling between the signal responses in distinct brain areas. Usually, functional magnetic resonance imaging (fMRI) time series connections are estimated through zero-lag correlation metrics that quantify the statistical similarity between pairs of regions or spectral measures that assess synchronization at a frequency band of interest. Here, we explored the application of a new metric to assess the functional synchronization in phase space between fMRI time series in a resting state. We applied a complete topological analysis to the resulting connectivity matrix to uncover both the macro-scale organization of the brain and detect the most important nodes. The synchronization metric is also compared with Pearson's correlation coefficient and spectral coherence to highlight similarities and differences between the topologies of the three functional networks. We found that the individual topological organization of the resulting synchronization-based connectivity networks shows a finer modular organization than that identified with the other two metrics and a low overlap with the modular partitions of the other two networks suggesting that the derived topological information is not redundant and could be potentially integrated to provide a multi-scale description of functional connectivity

    Applications of PDEs inpainting to magnetic particle imaging and corneal topography

    Get PDF
    In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques

    Air pollution and mortality for cancer of the respiratory system in Italy: an explainable artificial intelligence approach

    Get PDF
    Respiratory system cancer, encompassing lung, trachea and bronchus cancer, constitute a substantial and evolving public health challenge. Since pollution plays a prominent cause in the development of this disease, identifying which substances are most harmful is fundamental for implementing policies aimed at reducing exposure to these substances. We propose an approach based on explainable artificial intelligence (XAI) based on remote sensing data to identify the factors that most influence the prediction of the standard mortality ratio (SMR) for respiratory system cancer in the Italian provinces using environment and socio-economic data. First of all, we identified 10 clusters of provinces through the study of the SMR variogram. Then, a Random Forest regressor is used for learning a compact representation of data. Finally, we used XAI to identify which features were most important in predicting SMR values. Our machine learning analysis shows that NO, income and O3 are the first three relevant features for the mortality of this type of cancer, and provides a guideline on intervention priorities in reducing risk factors

    Territorial Development as an Innovation Driver: A Complex Network Approach

    Get PDF
    Rankings are a well-established tool to evaluate the performance of actors in different sectors of the economy, and their use is increasing even in the context of the startup ecosystem, both on a regional and on a global scale. Although rankings meet the demand for measurability and comparability, they often provide an oversimplified picture of the status quo, which, in particular, overlooks the variability of the socio-economic conditions in which the quantified results are achieved. In this paper, we describe an approach based on constructing a network of world countries, in which links are determined by mutual similarity in terms of development indicators. Through the instrument of community detection, we perform an unsupervised partition of the considered set of countries, aimed at interpreting their performance in the StartupBlink rankings. We consider both the global ranking and the specific ones (quality, quantity, business). After verifying if community membership is predictive of the success of a country in the considered ranking, we rate country performances in terms of the expectation based on community peers. We are thus able to identify cases in which performance is better than expected, providing a benchmark for countries in similar conditions, and cases in which performance is below the expectation, highlighting the need to strengthen the innovation ecosystem
    corecore