2 research outputs found

    Table_1_Interactions Between Clostridioides difficile and Fecal Microbiota in in Vitro Batch Model: Growth, Sporulation, and Microbiota Changes.DOCX

    No full text
    <p>Disturbance in gut microbiota is crucial for the development of Clostridioides difficile infection (CDI). Different mechanisms through which gut microbiota influences C. difficile colonization are known. However, C. difficile could also affect gut microbiota balance as previously demonstrated by cultivation of fecal microbiota in C. difficile conditioned medium. In current study, the interactions of C. difficile cells with gut microbiota were addressed. Three different strains (ribotypes 027, 014/020, and 010) were co-cultivated with two types of fecal microbiota (healthy and dysbiotic) using in vitro batch model. While all strains showed higher sporulation frequency in the presence of dysbiotic fecal microbiota, the growth was strain dependent. C. difficile either proliferated to comparable levels in the presence of dysbiotic and healthy fecal microbiota or grew better in co-culture with dysbiotic microbiota. In co-cultures with any C. difficile strain fecal microbiota showed decreased richness and diversity. Dysbiotic fecal microbiota was more affected after co-culture with C. difficile than healthy microbiota. Altogether, 62 OTUs were significantly changed in co-cultures of dysbiotic microbiota/C. difficile and 45 OTUs in co-cultures of healthy microbiota/C. difficile. However, the majority of significantly changed OTUs in both types of microbiota belonged to the phylum Firmicutes with Lachnospiraceae and Ruminococcaceae origin.</p

    Data_Sheet_1_Children gut microbiota exhibits a different composition and metabolic profile after in vitro exposure to Clostridioides difficile and increases its sporulation.PDF

    No full text
    Clostridioides difficile (Clostridium difficile) infection (CDI) is one of the main public health concerns in adults, while children under 2ā€‰years of age are often colonized asymptomatically. In both adults and children, CDI is strongly associated with disturbances in gut microbiota. In this study, an in-vitro model of children gut microbiota was challenged with vegetative cells or a conditioned media of six different toxigenic C. difficile strains belonging to the ribotypes 027, 078, and 176. In the presence of C. difficile or conditioned medium the children gut microbiota diversity decreased and all main phyla (Bacteroidetes, Firmicutes, and Proteobacteria) were affected. The NMR metabolic spectra divided C. difficile exposed children gut microbiota into three clusters. The grouping correlated with nine metabolites (short chain fatty acids, ethanol, phenolic acids and tyramine). All strains were able to grow in the presence of children gut microbiota and showed a high sporulation rate of up to 57%. This high sporulation rate in combination with high asymptomatic carriage in children could contribute to the understanding of the reported role of children in C. difficile transmissions.</p
    corecore