5 research outputs found

    The effect of ultrasonic energy on the enhancement of the biodegradability of food waste

    Get PDF
    In this study, the effect of ultrasonic pretreatment on the physicochemical property changes and methane production potential of anaerobic digestion of food waste was investigated. The study, involving a laboratory experimentation by sonicating 200 mL of food waste sample, was investigated at different sonication times (2, 4, 6, 8, 10 min), and the specific energy input ranged from 5,396 to 25,997 kJ/kg total solid. The experimental results found that the mean particle size diameter (d50) of the ultrasonically treated food waste decreased from 59 to 21.9 μm with the specific surface area increasing from 0.523 to 1.2 μm2/g. This is evidenced in the food waste morphological structure changes from particles or granules varying in size and shape from small to large and round to oval or unsymmetrical shaped when the food waste samples were sonicated in the range of 2–10 min as shown by scanning electron microscopy. The value of soluble chemical oxygen demand was increased about 34–40% while the degree of disintegration was recorded as 57.15, 61.10, 71.08, 68.94, and 68.68%, respectively. The CODsolubilization was achieved around 11.4, 11.8, 13.4, 12.7, and 13.2%, when the food waste sample was sonicated at 2, 4, 6, 8, and 10 min, respectively. This CODsolubilization correlated well with DD when the linear relationship was shown by R2 = 0.945. The result shows that the use of sonicated food waste in the anaerobic digestion process has increased about 45.9, 40.3, 46.6, 64.4, and 70.5% of cumulative CH4 production rates in the food waste sample sonicated at 2, 4, 6, 8, and 10 min, respectively, when compared to the non-sonicated food waste sample

    Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors

    Get PDF
    Background: Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings: Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamideand 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions: The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance

    Common surgical procedures in pilonidal sinus disease: A meta-analysis, merged data analysis, and comprehensive study on recurrence

    Get PDF
    Abstract We systematically searched available databases. We reviewed 6,143 studies published from 1833 to 2017. Reports in English, French, German, Italian, and Spanish were considered, as were publications in other languages if definitive treatment and recurrence at specific follow-up times were described in an English abstract. We assessed data in the manner of a meta-analysis of RCTs; further we assessed non-RCTs in the manner of a merged data analysis. In the RCT analysis including 11,730 patients, Limberg & Dufourmentel operations were associated with low recurrence of 0.6% (95%CI 0.3–0.9%) 12 months and 1.8% (95%CI 1.1–2.4%) respectively 24 months postoperatively. Analysing 89,583 patients from RCTs and non-RCTs, the Karydakis & Bascom approaches were associated with recurrence of only 0.2% (95%CI 0.1–0.3%) 12 months and 0.6% (95%CI 0.5–0.8%) 24 months postoperatively. Primary midline closure exhibited long-term recurrence up to 67.9% (95%CI 53.3–82.4%) 240 months post-surgery. For most procedures, only a few RCTs without long term follow up data exist, but substitute data from numerous non-RCTs are available. Recurrence in PSD is highly dependent on surgical procedure and by follow-up time; both must be considered when drawing conclusions regarding the efficacy of a procedure
    corecore