11 research outputs found

    Anxiolysis for laceration repair in children: a survey of pediatric emergency providers in Canada

    Get PDF
    Objectives: Intranasal dexmedetomidine is a potentially effective anxiolytic but its role in pediatric laceration repair is only emerging. Future trials and clinical adoption of intranasal dexmedetomidine depend on understanding pediatric emergency providers’ practice patterns surrounding anxiolysis and perceived barriers to intranasal dexmedetomidine for anxiolysis during suture repair in children. Our objectives were to characterize these parameters to inform future research and facilitate clinical adoption. Methods: We conducted an online survey of pediatric emergency physician members of Pediatric Emergency Research Canada from September to December 2020. Questions pertained to perceptions of anxiolysis for suture repair, with a focus on intranasal dexmedetomidine. The primary outcome was anxiolysis for suture repair. Data were reported using descriptive statistics. Results: The response rate was 155/225 (68.9%). During suture repair, 127/148 (86%) believed that \u3e 25% of young children experience distress requiring physical restraint. 116/148 (78%) would provide anxiolysis, mainly intranasal benzodiazepines (100/148, 68%). Only 6/148 (4%) would provide intranasal dexmedetomidine but 95/148 (64%) would consider it if there was evidence of benefit. The most common perceived barriers to intranasal dexmedetomidine included inadequate personal experience (114/145, 79%) and lack of access (60/145, 41%). Conclusions: Most Canadian pediatric emergency providers believe that laceration repair in a young child is distressing. Despite questionable efficacy, most would provide intranasal benzodiazepines, but would consider intranasal dexmedetomidine if there was evidence of benefit

    Intranasal Dexmedetomidine for Procedural Distress in Children: A Systematic Review.

    Get PDF
    CONTEXT: Intranasal dexmedetomidine (IND) is an emerging agent for procedural distress in children. OBJECTIVE: To explore the effectiveness of IND for procedural distress in children. DATA SOURCES: We performed electronic searches of Medline (1946-2019), Embase (1980-2019), Google Scholar (2019), Cumulative Index to Nursing and Allied Health Literature (1981-2019), and Cochrane Central Register. STUDY SELECTION: We included randomized trials of IND for procedures in children. DATA EXTRACTION: Methodologic quality of evidence was evaluated by using the Cochrane Collaboration\u27s risk of bias tool and the Grading of Recommendations Assessment, Development, and Evaluation system, respectively. The primary outcome was the proportion of participants with adequate sedation. RESULTS: Among 19 trials ( LIMITATIONS: The adequacy of sedation was subjective, which possibly led to biased outcome reporting. CONCLUSIONS: Given the methodologic limitations of included trials, IND is likely more effective at sedating children compared to oral chloral hydrate and oral midazolam. However, this must be weighed against the potential for adverse cardiovascular effects

    Adaptive randomised controlled non-inferiority multicentre trial (the Ketodex Trial) on intranasal dexmedetomidine plus ketamine for procedural sedation in children: Study protocol

    Get PDF
    Introduction Up to 40% of orthopaedic injuries in children require a closed reduction, almost always necessitating procedural sedation. Intravenous ketamine is the most commonly used sedative agent. However, intravenous insertion is painful and can be technically difficult in children. We hypothesise that a combination of intranasal dexmedetomidine plus intranasal ketamine (Ketodex) will be non-inferior to intravenous ketamine for effective sedation in children undergoing a closed reduction. Methods and analysis This is a six-centre, four-arm, adaptive, randomised, blinded, controlled, non-inferiority trial. We will include children 4-17 years with a simple upper limb fracture or dislocation that requires sedation for a closed reduction. Participants will be randomised to receive either intranasal Ketodex (one of three dexmedetomidine and ketamine combinations) or intravenous ketamine. The primary outcome is adequate sedation as measured using the Paediatric Sedation State Scale. Secondary outcomes include length of stay, time to wakening and adverse effects. The results of both per protocol and intention-to-treat analyses will be reported for the primary outcome. All inferential analyses will be undertaken using a response-adaptive Bayesian design. Logistic regression will be used to model the dose-response relationship for the combinations of intranasal Ketodex. Using the Average Length Criterion for Bayesian sample size estimation, a survey-informed non-inferiority margin of 17.8% and priors from historical data, a sample size of 410 participants will be required. Simulations estimate a type II error rate of 0.08 and a type I error rate of 0.047. Ethics and dissemination Ethics approval was obtained from Clinical Trials Ontario for London Health Sciences Centre and McMaster Research Ethics Board. Other sites have yet to receive approval from their institutions. Informed consent will be obtained from guardians of all participants in addition to assent from participants. Study data will be submitted for publication regardless of results. Trial registration number NCT0419525

    Adaptive randomised controlled non-inferiority multicentre trial (the Ketodex Trial) on intranasal dexmedetomidine plus ketamine for procedural sedation in children: Study protocol

    Get PDF
    Introduction Up to 40% of orthopaedic injuries in children require a closed reduction, almost always necessitating procedural sedation. Intravenous ketamine is the most commonly used sedative agent. However, intravenous insertion is painful and can be technically difficult in children. We hypothesise that a combination of intranasal dexmedetomidine plus intranasal ketamine (Ketodex) will be non-inferior to intravenous ketamine for effective sedation in children undergoing a closed reduction. Methods and analysis This is a six-centre, four-arm, adaptive, randomised, blinded, controlled, non-inferiority trial. We will include children 4-17 years with a simple upper limb fracture or dislocation that requires sedation for a closed reduction. Participants will be randomised to receive either intranasal Ketodex (one of three dexmedetomidine and ketamine combinations) or intravenous ketamine. The primary outcome is adequate sedation as measured using the Paediatric Sedation State Scale. Secondary outcomes include length of stay, time to wakening and adverse effects. The results of both per protocol and intention-to-treat analyses will be reported for the primary outcome. All inferential analyses will be undertaken using a response-adaptive Bayesian design. Logistic regression will be used to model the dose-response relationship for the combinations of intranasal Ketodex. Using the Average Length Criterion for Bayesian sample size estimation, a survey-informed non-inferiority margin of 17.8% and priors from historical data, a sample size of 410 participants will be required. Simulations estimate a type II error rate of 0.08 and a type I error rate of 0.047. Ethics and dissemination Ethics approval was obtained from Clinical Trials Ontario for London Health Sciences Centre and McMaster Research Ethics Board. Other sites have yet to receive approval from their institutions. Informed consent will be obtained from guardians of all participants in addition to assent from participants. Study data will be submitted for publication regardless of results. Trial registration number NCT0419525

    The intranasal dexmedetomidine plus ketamine for procedural sedation in children, adaptive randomized controlled non-inferiority multicenter trial (Ketodex): a statistical analysis plan

    Get PDF
    Background: Procedural sedation and analgesia (PSA) is frequently required to perform closed reductions for fractures and dislocations in children. Intravenous (IV) ketamine is the most commonly used sedative agent for closed reductions. However, as children find IV insertion a distressing and painful procedure, there is need to identify a feasible alternative route of administration. There is evidence that a combination of dexmedetomidine and ketamine (ketodex), administered intranasally (IN), could provide adequate sedation for closed reductions while avoiding the need for IV insertion. However, there is uncertainty about the optimal combination dose for the two agents and whether it can provide adequate sedation for closed reductions. The Intranasal Dexmedetomidine Plus Ketamine for Procedural Sedation (Ketodex) study is a Bayesian phase II/III, non-inferiority trial in children undergoing PSA for closed reductions that aims to address both these research questions. This article presents in detail the statistical analysis plan for the Ketodex trial and was submitted before the outcomes of the trial were available for analysis. Methods/design: The Ketodex trial is a multicenter, four-armed, randomized, double-dummy controlled, Bayesian response adaptive dose finding, non-inferiority, phase II/III trial designed to determine (i) whether IN ketodex is non-inferior to IV ketamine for adequate sedation in children undergoing a closed reduction of a fracture or dislocation in a pediatric emergency department and (ii) the combination dose for IN ketodex that provides optimal sedation. Adequate sedation will be primarily measured using the Pediatric Sedation State Scale. As secondary outcomes, the Ketodex trial will compare the length of stay in the emergency department, time to wakening, and adverse events between study arms. Discussion: The Ketodex trial will provide evidence on the optimal dose for, and effectiveness of, IN ketodex as an alternative to IV ketamine providing sedation for patients undergoing a closed reduction. The data from the Ketodex trial will be analyzed from a Bayesian perspective according to this statistical analysis plan. This will reduce the risk of producing data-driven results introducing bias in our reported outcomes. Trial registration: ClinicalTrials.gov NCT04195256. Registered on December 11, 2019

    Post–COVID-19 Conditions Among Children 90 Days After SARS-CoV-2 Infection

    Get PDF
    IMPORTANCE Little is known about the risk factors for, and the risk of, developing post-COVID-19 conditions (PCCs) among children. OBJECTIVES To estimate the proportion of SARS-CoV-2-positive children with PCCs 90 days after a positive test result, to compare this proportion with SARS-CoV-2-negative children, and to assess factors associated with PCCs. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study, conducted in 36 emergency departments (EDs) in 8 countries between March 7, 2020, and January 20, 2021, included 1884 SARS-CoV-2-positive children who completed 90-day follow-up; 1686 of these children were frequency matched by hospitalization status, country, and recruitment date with 1701 SARS-CoV-2-negative controls. EXPOSURE SARS-CoV-2 detected via nucleic acid testing. MAIN OUTCOMES AND MEASURES Post-COVID-19 conditions, defined as any persistent, new, or recurrent health problems reported in the 90-day follow-up survey. RESULTS Of 8642 enrolled children, 2368 (27.4%) were SARS-CoV-2 positive, among whom 2365 (99.9%) had index ED visit disposition data available; among the 1884 children (79.7%) who completed follow-up, the median age was 3 years (IQR, 0-10 years) and 994 (52.8%) were boys. A total of 110 SARS-CoV-2-positive children (5.8%; 95% CI, 4.8%-7.0%) reported PCCs, including 44 of 447 children (9.8%; 95% CI, 7.4%-13.0%) hospitalized during the acute illness and 66 of 1437 children (4.6%; 95% CI, 3.6%-5.8%) not hospitalized during the acute illness (difference. 5.3%; 95% CI, 2.5%-8.5%). Among SARS-CoV-2-positive children, the most common symptom was fatigue or weakness (21 [1.1%]). Characteristics associated with reporting at least 1 PCC at 90 days included being hospitalized 48 hours or more compared with no hospitalization (adjusted odds ratio [aOR], 2.67 [95% CI, 1.63-4.38]); having 4 or more symptoms reported at the index ED visit compared with 1 to 3 symptoms (4-6 symptoms: aOR, 2.35 [95% CI, 1.28-4.31]; >= 7 symptoms: aOR, 4.59 [95% CI, 2.50 8.44]); and being 14 years of age or older compared with younger than 1 year (aOR, 2.67 [95% CI, 1.43-4.99]). SARS-CoV-2-positive children were more likely to report PCCs at 90 days compared with those who tested negative, both among those who were not hospitalized (55 of 1295 [4.2%; 95% CI, 3.2%-5.5%] vs 35 of 1321[2.7%; 95% CI, 1.9%-3.7%]; difference, 1.6% [95% CI, 0.2%-3.0%]) and those who were hospitalized (40 of 391[10.2%; 95% CI, 7.4%-13.7%] vs 19 of 380 [5.0%; 95% CI, 3.0%-7.7%]; difference, 5.2% [95% CI, 1.5%-9.1%]). In addition, SARS-CoV-2 positivity was associated with reporting PCCs 90 days after the index ED visit (aOR, 1.63 [95% CI, 1.14-2.35]), specifically systemic health problems (eg, fatigue, weakness, fever; aOR, 2.44 [95% CI, 1.19-5.00]). CONCLUSIONS AND RELEVANCE In this cohort study, SARS-CoV-2 infection was associated with reporting PCCs at 90 days in children. Guidance and follow-up are particularly necessary for hospitalized children who have numerous acute symptoms and are older.This studywas supported by grants from the Canadian Institutes of Health Research (operating grant: COVID-19-clinical management); the Alberta Health Services-University of Calgary-Clinical Research Fund; the Alberta Children's Hospital Research Institute; the COVID-19 Research Accelerator Funding Track (CRAFT) Program at the University of California, Davis; and the Cincinnati Children's Hospital Medical Center Division of Emergency Medicine Small Grants Program. Dr Funk is supported by the University of Calgary Eyes-High PostDoctoral Research Fund. Dr Freedman is supported by the Alberta Children's Hospital Foundation Professorship in Child Health andWellness

    Adaptive randomised controlled non-inferiority multicentre trial (the Ketodex Trial) on intranasal dexmedetomidine plus ketamine for procedural sedation in children: study protocol

    Get PDF
    Introduction Up to 40% of orthopaedic injuries in children require a closed reduction, almost always necessitating procedural sedation. Intravenous ketamine is the most commonly used sedative agent. However, intravenous insertion is painful and can be technically difficult in children. We hypothesise that a combination of intranasal dexmedetomidine plus intranasal ketamine (Ketodex) will be non-inferior to intravenous ketamine for effective sedation in children undergoing a closed reduction.Methods and analysis This is a six-centre, four-arm, adaptive, randomised, blinded, controlled, non-inferiority trial. We will include children 4–17 years with a simple upper limb fracture or dislocation that requires sedation for a closed reduction. Participants will be randomised to receive either intranasal Ketodex (one of three dexmedetomidine and ketamine combinations) or intravenous ketamine. The primary outcome is adequate sedation as measured using the Paediatric Sedation State Scale. Secondary outcomes include length of stay, time to wakening and adverse effects. The results of both per protocol and intention-to-treat analyses will be reported for the primary outcome. All inferential analyses will be undertaken using a response-adaptive Bayesian design. Logistic regression will be used to model the dose–response relationship for the combinations of intranasal Ketodex. Using the Average Length Criterion for Bayesian sample size estimation, a survey-informed non-inferiority margin of 17.8% and priors from historical data, a sample size of 410 participants will be required. Simulations estimate a type II error rate of 0.08 and a type I error rate of 0.047.Ethics and dissemination Ethics approval was obtained from Clinical Trials Ontario for London Health Sciences Centre and McMaster Research Ethics Board. Other sites have yet to receive approval from their institutions. Informed consent will be obtained from guardians of all participants in addition to assent from participants. Study data will be submitted for publication regardless of results.Trial registration number NCT0419525
    corecore