7 research outputs found
Tensor networks, p-adic fields, and algebraic curves: arithmetic and the AdS_3/CFT_2 correspondence
One of the many remarkable properties of conformal field theory in two dimensions is its connection to algebraic geometry. Since every compact Riemann surface is a projective algebraic curve, many constructions of interest in physics (which a priori depend on the analytic structure of the spacetime) can be formulated in purely algebraic language. This opens the door to interesting generalizations, obtained by taking another choice of field: for instance, the p-adics. We generalize the AdS/CFT correspondence according to this principle; the result is a formulation of holography in which the bulk geometry is discrete—the Bruhat–Tits tree for PGL(2,Qp)—but the group of bulk isometries nonetheless agrees with that of boundary conformal transformations and is not broken by discretization. We suggest that this forms the natural geometric setting for tensor networks that have been proposed as models of bulk reconstruction via quantum error correcting codes; in certain cases, geodesics in the Bruhat–Tits tree reproduce those constructed using quantum error correction. Other aspects of holography also hold: Standard holographic results for massive free scalar fields in a fixed background carry over to the tree, whose vertical direction can be interpreted as a renormalization-group scale for modes in the boundary CFT. Higher-genus bulk geometries (the BTZ black hole and its generalizations) can be understood straightforwardly in our setting, and the Ryu–Takayanagi formula for the entanglement entropy appears naturally
Twisted characters and holomorphic symmetries
We consider holomorphic twists of arbitrary supersymmetric theories in four
dimensions. Working in the BV formalism, we rederive classical results
characterizing the holomorphic twist of chiral and vector supermultiplets,
computing the twist explicitly as a family over the space of nilpotent
supercharges in minimal supersymmetry. The BV formalism allows one to work with
or without auxiliary fields, according to preference; for chiral superfields,
we show that the result of the twist is an identical BV theory, the holomorphic
system with superpotential, independent of whether or not
auxiliary fields are included. We compute the character of local operators in
this holomorphic theory, demonstrating agreement of the free local operators
with the usual index of free fields. The local operators with superpotential
are computed via a spectral sequence, and are shown to agree with functions on
a formal mapping space into the derived critical locus of the superpotential.
We consider the holomorphic theory on various geometries, including Hopf
manifolds and products of arbitrary pairs of Riemann surfaces, and offer some
general remarks on dimensional reductions of holomorphic theories along the
-sphere to topological quantum mechanics. We also study an
infinite-dimensional enhancement of the flavor symmetry in this example, to a
recently-studied central extension of the derived holomorphic functions with
values in the original Lie algebra that generalizes the familiar Kac--Moody
enhancement in two-dimensional chiral theories
Remarks on the relationship between â„’p stability and internal stability of nonlinear systems
In this paper, we investigate the relationship between â„’p stability and internal stability of nonlinear systems. It is shown that under certain conditions, â„’p stability without finite gain implies attractivity of the equilibrium, and that local â„’p stability with finite gain implies local asymptotic stability of the origin
Remarks on the relationship between â„’p stability and internal stability of nonlinear systems
In this paper, we investigate the relationship between â„’p stability and internal stability of nonlinear systems. It is shown that under certain conditions, â„’p stability without finite gain implies attractivity of the equilibrium, and that local â„’p stability with finite gain implies local asymptotic stability of the origin