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Abstract

One of the many remarkable properties of conformal field theory in two dimensions is its connection

to algebraic geometry. Since every compact Riemann surface is a projective algebraic curve, many

constructions of interest in physics (which a priori depend on the analytic structure of the spacetime)

can be formulated in purely algebraic language. This opens the door to interesting generalizations,

obtained by taking another choice of field: for instance, the p-adics. We generalize the AdS/CFT

correspondence according to this principle; the result is a formulation of holography in which the bulk

geometry is discrete—the Bruhat–Tits tree for PGL(2,Qp)—but the group of bulk isometries nonethe-

less agrees with that of boundary conformal transformations and is not broken by discretization. We

suggest that this forms the natural geometric setting for tensor networks that have been proposed

as models of bulk reconstruction via quantum error correcting codes; in certain cases, geodesics in

the Bruhat–Tits tree reproduce those constructed using quantum error correction. Other aspects of

holography also hold: Standard holographic results for massive free scalar fields in a fixed background

carry over to the tree, whose vertical direction can be interpreted as a renormalization-group scale for

modes in the boundary CFT. Higher-genus bulk geometries (the BTZ black hole and its generaliza-

tions) can be understood straightforwardly in our setting, and the Ryu-Takayanagi formula for the

entanglement entropy appears naturally.
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1 Introduction

Much attention has been paid of late to ideas that allow certain features of conformal field theory, such

as long-range correlations, to be reproduced in lattice systems or other finitary models. As an example,

the multiscale entanglement renormalization ansatz (or MERA), formulated by Vidal in [54], provides an

algorithm to compute many-qubit quantum states whose entanglement properties are similar to those of

the CFT vacuum. In Vidal’s method, the states of progressively more distant qubits are entangled using

successive layers of a self-similar network of finite tensors.

This tensor network can be thought of as a particular quantum circuit; other new connections between

quantum information theory and holography were made in [1], which pointed out that bulk reconstruction

and bulk locality in the AdS/CFT correspondence bear strong similarities to the properties of quantum

error-correcting codes. This intuition was used in [45] to construct a family of “holographic” quantum

codes, associated to hyperbolic tilings. In these codes, bulk qubits are thought of as the logical inputs,

the boundary qubits at the periphery of the tiling constitute the encoded state, and the error-correcting

properties of the code mimic features of holography such as the Ryu-Takayanagi formula [48].

Given the similarity of these networks (in which the number of tensors scales exponentially with the

number of layers) to the geometry of hyperbolic space, it was natural to search for a connection with

holography. In [52], Swingle proposed that MERA might be a natural discretization of AdS/CFT, in

which the holographic direction (or renormalization scale) corresponds to the successive layers of the

tensor network, and individual tensors are associated to “primitive cells” of the bulk geometry. However,

successive work [3] identified constraints that prevent an AdS/MERA correspondence of this kind from

fully reproducing all features of the bulk physics.

In this paper, we propose that discrete holographic models should be understood as approximating bulk

geometry in a fundamentally different way. We are guided by considering a new and orthogonal direction in

which the AdS3/CFT2 correspondence can be generalized. In these models, based on the p-adic numbers,

discrete bulk geometry appears naturally. Despite this, essential and basic features of AdS/CFT, such as

bulk isometries and boundary conformal symmetry (which are destroyed by a naive discretization), have

analogues and can be fully understood in the discrete setting.

The bulk geometries relevant to the AdS3/CFT2 correspondence are well understood. The most well-

known black hole solution is that of Bañados, Teitelboim, and Zanelli [2]; this solution was generalized

to a family of higher-genus Euclidean black holes by Krasnov [31]. These solutions can be understood in

general using the technique of Schottky uniformization, which presents a higher-genus black hole as the

quotient of empty AdS3 by a particular discrete subgroup of its isometries.

In [40], a holographic correspondence was established for these three-dimensional geometries. This

correspondence expresses the conformal two point correlation function on the conformal boundary at
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infinity (a Riemann surface XΓ of genus g) in terms of geodesic lengths in the bulk space (a hyperbolic

handlebody HΓ of genus g). The formula relating the boundary theory to gravity in the bulk is based on

Manin’s result [36] on the Arakelov Green’s function.

However, we consider AdS3/CFT2 not merely because it is a simple setting for holography. For us, the

crucial property of conformal field theory in two dimensions is its strong ties to algebraic geometry. These

occur because every compact Riemann surface is a projective algebraic curve, so that many of the analytic

concepts that arise in physics can (in two-dimensional contexts) be reformulated in purely algebraic terms.

Once a concept can be formulated algebraically, it has many natural generalizations, obtained by changing

the field of numbers one is considering. For instance, given a Riemann surface as the zero locus of a

polynomial equation with rational coefficients, one can ask for the set of solutions over C, over R, over

more exotic fields like the p-adics, or even over the integers.

The aforementioned holographic formula—and the the whole geometric setting of the correspondence,

consisting of the Euclidean hyperbolic space AdS3, its conformal boundary P1(C), and quotients by actions

of Schottky groups Γ ⊂ PSL(2,C)—has a natural analogue in which the field is the p-adic numbers Qp.

The bulk space becomes the Bruhat–Tits tree of Qp, which is a manifestly discrete infinite graph of uniform

valence. Its conformal boundary at infinity is P1(Qp), which can be thought of as the spacetime for an

unusual class of CFTs. Black hole solutions are understood to be quotients of this geometry by p-adic

Schottky groups Γ ⊂ PGL(2,Qp); these are known as Mumford curves in the mathematics literature.

The results of Drinfeld and Manin [35] on periods of p-adic Schottky groups provide the corresponding

holographic formula in this non-archimedean setting. We will give what we hope are intuitive introductions

to these possibly unfamiliar concepts in the bulk of the paper.

Conformal field theory on p-adic spacetime has previously been developed, for the most part, in the

context of the p-adic string theory (see, for instance, [10] and references therein), but has also been

considered abstractly [42]. However, our perspective on the subject will be somewhat different: rather

than using the p-adics as a worldsheet to construct real-space string amplitudes, our goal in this paper is to

further develop the original holographic correspondence of [40] for the higher-genus black holes, informed

by recent developments in the understanding of the AdS/CFT correspondence. We will emphasize the

large extent to which algebraic structure allows familiar ideas, concepts, and arguments from ordinary

AdS3/CFT2 can be carried over—in many cases line by line—to the p-adic setting. In addition to the

holographic formulas of Manin and Marcolli, the standard semiclassical holographic analysis of scalar

fields propagating without backreaction in anti-de Sitter space applies almost without alteration to the

Bruhat–Tits tree. We discuss this in detail in §4.

In some cases, intuitions about how holography works in the archimedean case are supported even more

sharply over the p-adics. For example, one normally thinks of the holographic direction as corresponding
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to a renormalization-group scale. Over the p-adics, as shown in §4.4, boundary modes contribute to the

reconstruction of bulk functions only up to a height determined by their wavelength, and reconstruct

precisely to zero above this height in the tree.

One of the most important new ideas in the AdS/CFT correspondence is the study of entanglement

entropy in boundary states and its connection (via the Ryu-Takayanagi formula) to the geometry of the

bulk. We argue that, at least for the p-adic free boson CFT, an analogue of the familiar logarithmic scaling

of the ground-state entanglement entropy should hold. Given such a formula, the Ryu-Takayanagi formula

follows immediately from simple considerations of the geometry of the tree.

Tensor network models are often of interest because they reproduce our expectations about ground-

state entanglement entropy, and in some cases (like the holographic quantum code of Pastawski et al. [45])

also satisfy formulas similar to Ryu-Takayanagi that relate the entanglement entropy to the size of paths

or surfaces in the interior of the network. Given that our models exhibit a discrete bulk spacetime, a

Ryu-Takayanagi formula, and a meaningful (and unbroken) group of bulk isometries/boundary conformal

mappings, we suggest that the p-adic geometry is the natural one to consider in attempting to link tensor

network models to spacetimes. We offer some ideas in this direction in §3.

Finally, on an even more speculative note, it is natural to wonder if the study of p-adic models of

holography can be used to learn about the real case. So-called “adelic formulas” relate quantities defined

over the various places (finite and infinite) of Q; it was suggested in [38] that fundamental physics should

be adelic in nature, with product formulae that relate the archimedean side of physics to a product of the

contributions of all the p-adic counterparts. We briefly speculate about adelic formulas for the entanglement

entropy in §5; one might hope that such formulas could be used to prove inequalities for entanglement

entropy like those considered in [5], using ultrametric properties of the p-adics. We hope to further develop

the adelic perspective, and return to these questions, in future work.

2 Review of necessary ideas

2.1 Basics of p-adic numbers

We begin with a lightning review of elementary properties of the p-adic fields. Our treatment here is far

from complete; for a more comprehensive exposition, the reader is referred to [32], or to another of the

many books that treat p-adic techniques.

When one constructs the continuum of the real numbers from the rationals, one completes with respect

to a metric: the distance between two points x, y ∈ Q is

d(x, y) = |x− y|∞, (2.1)
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where |·|∞ is the usual absolute value. There are Cauchy sequences of rational numbers for which successive

terms become arbitrarily close together, but the sequence does not approach any limiting rational number.

The real numbers “fill in the gaps,” such that every Cauchy sequence of rational numbers converges to a

real limit by construction. That property is known as metric completeness.

The p-adic fields Qp are completions of Q with respect to its other norms; these are defined by

ordp(x) = n when x = pn(a/b) with a, b ⊥ p; (2.2)

|x|p = p− ordp(x). (2.3)

By a theorem of Ostrowski, every norm on Q is equivalent to one of the p-adic norms or the usual (∞-adic)

norm. It is common to refer to the different possible completions as the different “places” of Q.

A number is p-adically small when it is divisible by a large power of p; one can think of the elements

of Qp as consisting of decimal numbers written in base p, which can extend infinitely far left (just as real

numbers can be thought of as ordinary decimals extending infinitely far right). Qp is uncountable and

locally compact with respect to the topology defined by its metric; as usual, a basis for this topology is

the set of open balls,

Bε(x) = {y ∈ Qp : |x− y|p < ε}. (2.4)

The ring of integers Zp of Qp is also the unit ball about the origin:

Zp = {x ∈ Qp : |x|p ≤ 1}. (2.5)

It can be described as the inverse limit of the system of base-p decimals with no fractional part and finite

(but increasingly many) digits:

Zp = lim←−
(
· · · → Z/pn+1Z→ Z/pnZ→ Z/pn−1Z→ · · ·

)
. (2.6)

Zp is a discrete valuation ring; its unique maximal ideal is m = pZp, and the quotient of Zp by m is the

finite field Fp. In general, for any finite extension of Qp, the quotient of its ring of integers by its maximal

ideal is a finite field Fpn ; we give more detail about this case in §6.1.

2.2 The Bruhat–Tits tree and its symmetries

In this section, we will describe the Bruhat–Tits Tree Tp and its symmetries. It should be thought of

as a hyperbolic (though discrete) bulk space with conformal boundary P1(Qp). Since these trees are a

crucial part of the paper and may be unfamiliar to the reader, our treatment is informal, and aims to build
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Figure 1: The standard representation of the Bruhat–Tits tree. The point at infinity and the center are
arbitrary as the tree is homogeneous. Geodesics such as the highlighted one are infinite paths through the
tree from ∞ to the boundary which uniquely specify elements of Qp. This path as a series specifies the
digits of the decimal expansion of x ∈ Q2 in this example. At the nth vertex, we choose either 0 or 1
corresponding to the value of xn in the pnth term of x. Negative powers of p correspond to larger p-adic
norms as we move towards the point ∞.

intuition. Out of necessity, our discussion is also brief; for a more complete treatment, the reader may

consult notes by Casselman [17] for constructions and properties related to the tree, or [58] for analysis on

the tree and connections to the p-adic string.

We begin with a description of the boundary and its symmetries, which are completely analogous to the

global conformal transformations of P1(C). We then turn our attention to the bulk space Tp, focusing on

its construction as a coset space and the action of PGL(2,Qp) on the vertices. Despite the fractal topology

of the p-adic numbers, we will find (perhaps surprisingly) that many formulas from the real or complex

cases are related to their p-adic counterparts by the rule |·|∞ → |·|p.
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2.2.1 Conformal group of P1(Qp)

The global conformal group on the boundary is SL(2,Qp), which consists of matrices of the form

A =

(
a b

c d

)
, with a, b, c, d ∈ Qp, ad− bc = 1. (2.7)

This acts on points x ∈ P1(Qp) by fractional linear transformations,

x→ ax+ b

cx+ d
. (2.8)

It can be checked that matrix multiplication corresponds to composition of such maps, so that the group

action is well-defined. This is analogous to the SL(2,C) action on the Riemann sphere P1(C). (We will

sometimes also refer to PGL(2,Qp); the two differ only in minor details.)

The existence of a local conformal algebra for Qp, in analogy with the Virasoro symmetry in two-

dimensional conformal field theory or general holomorphic mappings of P1(C), is a subtle question. It is

difficult to find definitions of a p-adic derivative or an infinitesimal transformation that are satisfactory for

this purpose. In particular, since the “well-behaved” complex-valued functions on Qp are in some sense

locally constant, there are no interesting derivations that act on the space of fields [42]. In this paper,

we will concern ourselves only with global symmetries, which can still be used to constrain the properties

of p-adic conformal field theories. We speculate about the possibility of enhanced conformal symmetry

in §6.2.

The determinant condition implies that there are three free p-adic numbers which specify an element of

SL(2,Qp). A convenient way to decompose a general SL(2,Qp) transformation is to view it as the product

of a special conformal transformation, a rotation, a dilatation, and a translation:(
pma b

c p−ma−1(1 + bc)

)
=

(
1 0

cp−ma−1 1

)(
a 0

0 a−1

)(
pm 0

0 p−m

)(
1 bp−ma−1

0 1

)
, (2.9)

where a, b, c ∈ Qp and |a|p = 1. One can verify that the product is an arbitrary element of SL(2,Qp), where

the determinant condition has been used to eliminate the d parameter. This represents a translation by

bp−ma−1, a dilatation by p2m, a rotation by a2, and a special conformal translation by cp−ma−1. We have

separated the diagonal subgroup into multiplication by elements of the unit circle, a ∈ Up ⊂ Zp, which

do not change the p-adic norm (and thus are “rotations” in a p-adic sense), and multiplication by powers

of p which scale the p-adic norm (and so correspond to dilatations). Representations of the multiplicative

group of unit p-adics provide an analogue of the spin quantum number; we discuss this further in §4.5. It
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is worth stressing that these transformations are finite, and so we are characterizing the symmetry group

rather than the algebra.

As is often the case in real conformal field theories, we can focus on the dilation subgroup. A diagonal

matrix in SL(2,Qp) and its action on the coordinate is(
α 0

0 α−1

)
, x→ x′ = α2x. (2.10)

This has the effect of changing the p-adic norm by

|x′|p = |α|2p|x|p. (2.11)

So if |α|p 6= 1, this will scale the size of coordinate. This parallels the complex case in which a dilatation

changes the complex norm by |z′| = |α|2|z|. It will turn out to be the case that 2-point functions of

spinless operators in p-adic conformal field theory will depend only on the p-adic norm of their separation.

Schematically,

〈φ(x)φ(y)〉 ≈ 1

|x− y|2∆
p

. (2.12)

Dilations will thus affect correlation functions of the p-adic conformal field theory exactly as in the complex

case.

2.2.2 PGL(2,Qp) action on the tree Tp

We have seen that fractional linear transformations of the boundary coordinate work as in the real case.

The action of the symmetry on the bulk space Tp is slightly more complicated to describe. Were we working

in the archimedean theory, we would identify PSL(2,R) as the isometry group of the hyperbolic upper

half space H = SL(2,R)/ SO(2). Here SO(2) is a maximal compact subgroup. Similarly, in the context

of AdS2+1/CFT2, we can think of the hyperbolic upper-half 3-space as a quotient space of the isometry

group by its maximal compact subgroup: H3 = SL(2,C)/ SU(2).

Following this intuition, we define the Bruhat–Tits tree to be the quotient of the p-adic conformal

group by its maximal compact subgroup:

Tp = PGL(2,Qp)/PGL(2,Zp). (2.13)

In contrast with the archimedean examples, Tp is a discrete space: it is a homogeneous infinite tree,

with vertices of valence p + 1, whose boundary can be identified with the p-adic projective line. We

expect isometries to correspond to rigid transformations of the vertices. Formally, the tree represents
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the incidence relations of equivalence classes of lattices in Qp × Qp. As outlined in the appendix of [10],

the group PGL(2,Qp) acts by matrix multiplication on the lattice basis vectors and takes one between

equivalence classes. These transformations are translations and rotations of the points in the tree; they

preserve distances, which are measured in the tree by just counting the number of edges along a given

path. Since any two vertices in a connected tree are joined by exactly one path, this is well-defined; all

paths are geodesics.

A standard way of representing Tp is depicted in Fig. 1 for the case p = 2. This is a regular tree with

p+ 1 legs at each vertex; the exponential growth in the number of vertices with distance from a base point

reflects the “hyperbolic” nature of distance in the the tree. Since paths are unique, there is a one-to-one

correspondence between infinite paths in the tree starting at ∞ and elements of Qp. (This can be viewed

like a p-adic version of stereographic projection.)

The choice of the apparent center and geodesic corresponding to infinity are arbitrary. Just as in the

archimedean case, we must fix three boundary points to identify a p-adic coordinate on the projective line,

corresponding to 0, 1, and∞. Once these arbitrary choices are made, the geodesics joining them form a Y

in the bulk, whose center is taken to be the centerpoint of the tree. We can then understand the geodesic

connecting∞ to x as labeling the unique p-adic decimal expansion for x = pγ(x0 +x1p+x2p
2 + . . . ), where

each of the xn take values in 0, 1, . . . p− 1 corresponding to the p possible choices to make at each vertex.

Each vertex of the tree is naturally marked with a copy of the finite field Fp, identified with one “digit” of

a p-adic number.

Viewing the tree as the space of p-adic decimal expansions may in some ways be more useful than

the definition in terms of equivalence classes of lattices. Geometrically moving closer or further from the

boundary corresponds to higher or lower precision of p-adic decimal expansions. Even with no reference to

quantum mechanics or gravity, we see some hint of holography and renormalization in the tree- a spatial

direction in the bulk parameterizes a scale or precision of boundary quantities. This is explored more fully

in §4.2.1.

We now illustrate some examples of PGL(2,Qp) transformations on the tree. First note that the choice

of the center node is arbitrary. We can take this point to be the equivalence class of unit lattices modulo

scalar multiplication. One can show that this equivalence class (or the node it corresponds to) is invariant

under the PGL(2,Zp) subgroup, so these transformations leave the center fixed and rotate the branches of

the tree about this point.

More interesting is a generator such as

g =

(
p 0

0 1

)
∈ PGL(2,Qp). (2.14)
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Figure 2: An alternative representation of the Bruhat–Tits Tree (for p = 3) in which we have unfolded the
tree along the 0 geodesic. The action of elements of PGL(2,Qp) acts by translating the entire tree along
different possible geodesics. In this example we translate along the 0 geodesic, which can be thought of as
multiplication of each term in a p-adic decimal expansion by p. This map has two fixed points at 0 and
∞. In this “unfolded” form, a point in P1(Qp) is specified by a geodesic that runs from ∞ and follows the
0 geodesic until some level in the tree where it leaves the 0 geodesic towards the boundary. The p-adic
norm is simply p to the inverse power of the point where it leaves the 0 geodesic (so leaving “sooner” leads
to a larger norm, and later to a smaller norm.

This transformation (and others in PGL(2,Qp)) act by translating the entire tree along a given geodesic

(one can see this either from the lattice incidence relations, or from translating or shifting the p-adic

decimal series expansion). This is illustrated in Fig. 2. We can think of these transformations as the

lattice analogs of translations and dilatations of the real hyperbolic plane.

2.2.3 Integration measures on p-adic spaces

Just as is the case for C, there are two natural measures on Qp (or more properly, on the projective line

over Qp); they can be understood intuitively by thinking of Qp as the boundary of Tp. The first is the

Haar measure dµ, which exists for all locally compact topological groups. With respect to either measure,

the size of the set of p-adic integers is taken to be 1:

µ(Zp) = 1. (2.15)

The Haar measure is then fixed by multiplicativity and translation invariance; any open ball has measure

equal to the p-adic norm of its radius. It is helpful to think of Qp as being “flat” when considered with

this measure.

The other measure, the Patterson-Sullivan measure, is the p-adic analogue of the Fubini-Study metric

on P1(C). It is most easily defined with reference to the tree, in which we fix a basepoint C (to be thought

of as the unique meeting point of the geodesics joining 0, 1, and ∞ when a coordinate is chosen on the

boundary). Recall that the open balls in Qp correspond to the endpoints of branches of the tree below a
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vertex v. In the Patterson-Sullivan measure,

dµ0(Bv) = p−d(C,v). (2.16)

The two measures are related by

dµ0(x) = dµ(x), |x|p ≤ 1;

dµ0(x) =
dµ(x)

|x|2p
, |x|p > 1. (2.17)

(Later on, we will at times use the familiar notation dx to refer to the Haar measure.) The most intuitive

way to picture the Patterson-Sullivan measure is to imagine the tree pointing “radially outward” from its

centerpoint. It is then easy to understand the transformation rule (2.17); it says that when all geodesics

point downward from infinity and the boundary is “flat” at the lower end of the picture, points far from

zero (outside Zp) can only be reached by geodesics that travel upward from C before turning back down

towards the boundary.

2.3 Schottky uniformization of Riemann surfaces

In this section, we review Schottky uniformization, which allows one to think of a higher-genus Riemann

surface as a quotient of the projective line by a particular discrete subgroup of its Möbius transformations.

A Schottky group of rank g ≥ 1 is a discrete subgroup of PSL(2,C) which is purely loxodromic and

isomorphic to a free group on g generators. The group PSL(2,C) acts on P1(C) by fractional linear

transformations,

γ =

(
a b

c d

)
: z 7→ az + b

cz + d
.

The loxodromic condition means that each nontrivial element γ ∈ Γ \ {1} has two distinct fixed points

z±γ (one attractive and one repelling) in P1(C). The closure in P1(C) of the set of all fixed points of elements

in Γ is the limit set ΛΓ of Γ, the set of all limit points of the action of Γ on P1(C). In the case g = 1 the

limit set consists of two points, which we can choose to identify with {0,∞}, while for g > 1 the set ΛΓ is

a Cantor set of Hausdorff dimension 0 ≤ dimH(ΛΓ) < 2. The Hausdorff dimension is also the exponent of

convergence of the Poincaré series of the Schottky group:
∑

γ∈Γ |γ′|s converges for s > dimH(ΛΓ), [8].

It is well known that any compact smooth Riemann surface X admits a Schottky uniformization,

namely X = ΩΓ/Γ, where Γ ⊂ PSL(2,C) is a Schottky group of rank equal to the genus g = g(X) of the

Riemann surface, and ΩΓ = P1(C) \ ΛΓ is the domain of discontinuity of the action of Γ on P1(C). There

is a well known relation between Schottky and Fuchsian uniformizations of compact Riemann surfaces of
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genus g ≥ 2, see [53].

A marking of a rank g Schottky group Γ ⊂ PSL(2,C) is a choice of a set of generators {γ1, . . . , γg}
of Γ and a set of 2g open connected regions Di in P1(C), with Ci = ∂Di the boundary Jordan curves

homemorphic to S1, with the following properties:

1. the closures of the Di are pairwise disjoint

2. γi(Ci) ⊂ Cg+i

3. γi(Di) ⊂ P1(C) \Dg+i.

The marking is classical if all the Ci are circles. (All Schottky groups admit a marking, but not all admit

a classical marking.) A fundamental domain FΓ for the action of the Schottky group Γ on the domain of

discontinuity ΩΓ ⊂ P1(C) can be constructed by taking

FΓ = P1(C) \ ∪gi=1(Di ∪ D̄g+i).

This satisfies ∪γ∈Γγ(FΓ) = ΩΓ. In the case of genus g = 1, with Γ = qZ, for some q ∈ C with |q| > 1,

the region FΓ constructed in this way is an annulus Aq, with D1 the unit disk in C and D2 the disk

around ∞ given by complement in P1(C) of the disk centered at zero of radius |q|, so that qZAq = C∗ =

P1(C) \ {0,∞} = ΩqZ . The resulting quotient Eq = C∗/qZ is the Tate uniformization of elliptic curves.

2.4 Hyperbolic handlebodies and higher genus black holes

The action of PSL(2,C) by fractional linear transformations on P1(C) extends to an action by isometries on

the real 3-dimensional hyperbolic space H3, with P1(C) its conformal boundary at infinity. In coordinates

(z, y) ∈ C× R∗+ in H3, the action of PSL(2,C) by isometries of the hyperbolic metric is given by

γ =

(
a b

c d

)
: (z, y) 7→

(
(az + b)(cz + d) + ac̄y2

|cz + d|2 + |c|2y2
,

y

|cz + d|2 + |c|2y2

)
.

Given a rank g Schottky group Γ ⊂ PSL(2,C), we can consider its action on the conformally compact-

ified hyperbolic 3-space H3 = H3 ∪P1(C). The only limit points of the action are on the limit set ΛΓ that

is contained in the conformal boundary P1(C), hence a domain of discontinuity for this action is given by

H3 ∪ ΩΓ ⊂ H3 = H3 ∪ P1(C).

12



The quotient of H3 by this action is a 3-dimensional hyperbolic handlebody of genus g

HΓ = H3/Γ,

with conformal boundary at infinity given by the Riemann surface XΓ = ΩΓ/Γ,

HΓ = HΓ ∪XΓ = (H3 ∪ ΩΓ)/Γ.

Given a marking of a rank g Schottky group Γ (for simplicity we will assume the marking is classical),

let Di be the discs in P1(C) of the marking, and let Di denote the geodesic domes in H3 with boundary

Ci = ∂Di, namely the Di are the open regions of H3 with boundary Si∪Di, where the Si are totally geodesic

surfaces in H3 with boundary Ci that project to Di on the conformal boundary. Then a fundamental

domain for the action of Γ on H3 ∪ ΩΓ is given by

FΓ = FΓ ∪ (H3 \ ∪gi=1(Di ∪ D̄g+i).

The boundary curves Ci for i = 1, . . . , g provide a collections of A-cycles, that give half of the generators

of the homology of the Riemann surface XΓ: the generators that become trivial in the homology of the

handlebody H̄Γ. The union of fundamental domains γ(FΓ) for γ ∈ Γ can be visualized as in Fig. 4.

In the case of genus g = 1 with Γ = qZ, acting on H3 by(
q1/2 0

0 q−1/2

)
(z, y) = (qz, |q|y),

with limit set {0,∞} the fundamental domain FΓ consists of the space in the upper half space H3 contained

in between the two spherical domes of radius 1 and |q| > 1. The generator q of the group acts on the

geodesic with endpoints 0 and ∞ as a translation by log |q|. The quotient H3/qZ is a hyperbolic solid

torus, with the Tate uniformized elliptic curve Eq = C∗/qZ as its conformal boundary at infinity, and with

a unique closed geodesic of length log q. It is well known (see [6], [33] and §2.3 of [40]) that the genus one

handlebodies HqZ are the Euclidean BTZ black holes [2], where the cases with q ∈ C \ R correspond to

spinning black holes. The geodesic length log |q| is the area of the event horizon, hence proportional to the

black hole entropy.

The case of higher genus hyperbolic handlebodies correspond to generalizations of the BTZ black hole

to the higher genus asymptotically AdS3 black holes considered in [31] and [40].

In these more general higher genus black hole, because of the very different nature of the limit set

(a fractal Cantor set instead of two points) the structure of the black hole event horizon is significantly
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Figure 3: Fundamental domain and quotient for the Euclidean BTZ black hole. Compare with the p-adic
BTZ geometry, shown in Fig. 10.

more complicated. In the Euclidean BTZ black hole, the only infinite geodesic that remains confined into

a compact region inside the hyperbolic solid torus HqZ for both t → ±∞ is the unique closed geodesic

(the image in the quotient of the geodesic in H3 given by the vertical line with endpoints 0 and ∞. On

the other hand, in the higher genus cases, the geodesics in the hyperbolic handlebody HΓ = H3/Γ can be

classified as:

1. Closed geodesics: these are the images in the quotient HΓ of geodesics in H3 with endpoints {z+
γ , z

−
γ },

the attractive and repelling fixed points of some element γ ∈ Γ.

2. Bounded geodesics: these images in the quotient HΓ of geodesics in H3 with endpoints on ΛΓ. If the

endpoints are not a pair of fixed points of the same element of Γ the geodesic in the quotient is not

closed, but it remains forever confined within a compact region inside HΓ, the convex core CΓ.

3. Unbounded geodesics: these are images in the quotient HΓ of geodesics in H3 with at least one of

the two endpoints in ΩΓ. These are geodesics in HΓ that wander off (in at least one time direction

t → ∞ or t → −∞) towards the conformal boundary XΓ at infinity and eventually leave every

compact region in HΓ.

The convex core CΓ ⊂ HΓ is the quotient by Γ of the geodesic hull in H3 of the limit set ΛΓ. It is a compact

region of finite hyperbolic volume in HΓ, and it is a deformation retract of HΓ. A natural replacement

for the event horizon of the BTZ black hole in these higher genus cases can be identified in terms of the

convex core CΓ, where we think of CΓ as the region from which geodesic trajectories cannot escape and

must remain forever confined. The complement HΓ \ CΓ is homeomorphic to ∂CΓ×R+ (see [14] for a more

general treatment of convex cores of Kleinian groups and ends of hyperbolic 3-manifolds). The boundary

∂CΓ is the event horizon of the higher genus black hole, with the black hole entropy proportional to the

area of ∂CΓ.
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Figure 4: Fundamental domains for the action of Γ on H3.

In [37] and [36], Manin proposed to interpret the tangle of bounded geodesics inside the hyperbolic

handlebody HΓ as a model for the missing “closed fiber at infinity” in Arakelov geometry. This interpreta-

tion was based on the calculation of the Arakelov Green function [36], and the analogy with the theory of

Mumford curves [43] and the computations of [35] for p-adic Schottky groups. The results of [36] and their

holographic interpretation in [40], as well as the parallel theory of Mumford curves and periods of p-adic

Schottky groups, will form the basis for our development of a p-adic and adelic form of the AdS+1/CFT

correspondence. The interpretation of the tangle of bounded geodesics in HΓ as “closed fiber at infinity”

of Arakelov geometry was further enriched with a cohomological interpretation in [18] (see also [19], [20]

for the p-adic counterpart).

2.5 Bruhat–Tits trees, p-adic Schottky groups, and Mumford curves

The theory of Schottky uniformization of Riemann surfaces as conformal boundaries of hyperbolic handle-

bodies has a non-archimedean parallel in the theory of Mumford curves, uniformized by p-adic Schottky

groups, seen as the boundary at infinity of a quotient of a Bruhat–Tits tree.
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Some basic facts regarding the geometry of the Bruhat–Tits tree Tp of Qp have been recalled in §2.2.

More generally, the geometry we consider here applies to any finite extension k of the p-adic field Qp.

By identifying (OQp/m
r) ⊗ Ok = Ok/m

rek , where ek is the ramification index of k over Qp, we see that

the Bruhat–Tits tree Tk for a finite extension k of Qp is obtained from the Bruhat–Tits tree of Qp by

adding ek − 1 new vertices in each edge of TQp and increasing the valence of all vertices to pf + 1, where

f = [k : Qp]/ek, the degree of the extension normalized by the ramification index.

Let Ok denote the ring of integers of k and m ⊂ Ok the maximal ideal, so that the residue field

Ok/m = Fq is a finite field with q = pr for some r ∈ N. The set of vertices V (Tk) of the Bruhat–Tits tree

Tk of k is the set of equivalence classes of free rank two Ok-modules, under the equivalence M1 ∼ M2 if

M1 = λM2, for some λ ∈ k∗. For a pair of such modules with M2 ⊂M1, one can define a distance function

d(M1,M2) = |l − k|, where M1/M2 = Ok/m
l ⊕ Ok/m

k. This distance is independent of representatives

in the equivalence relation. There is an edge in E(Tk) connecting two vertices in V (Tk) whenever the

corresponding classes of modules have distance one. The resulting tree Tk is an infinite homogeneous tree

with vertices of valence q + 1, where q = #Ok/m is the cardinality of the residue field. The boundary

at infinity of the Bruhat–Tits tree is identified with P1(k). One can think of the Bruhat–Tits tree as a

network, with a copy of the finite field Fq (or better of the projective line P1(Fq)) associated to each vertex:

this will be the guiding viewpoint in our approach to non-archimedean tensor networks.

The reader should beware that there is an unavoidable clash of notation: q is the standard notation for

the modular parameter of an elliptic curve, but is also used to denote a prime power q = pr in the context

of finite fields or extensions of the p-adics. While both uses will be made in this paper, particularly in

this section and in §6.2, we prefer not to deviate from standard usage; it should be apparent from context

which is intended, and hopefully no confusion should arise.

There is an action of PGL(2,k) on the set of vertices V (Tk) that preserves the distance, hence it acts

as isometries of the tree Tk. A p-adic Schottky group is a purely loxodromic finitely generated torsion free

subgroup of PGL(2,k). The Schottky group Γ is isomorphic to a free group on g-generators, with g the

rank of Γ.

In this p-adic setting the loxodromic condition means that every nontrivial element γ in Γ has two fixed

points z±γ on the boundary P1(k). Equivalently, an element γ is loxodromic if the two eigenvalues have

different p-adic valuation. The closure of the set of fixed points z±γ , or equivalently the set of accumulation

points of the action of Γ on Tk ∪ P1(k) is the limit set ΛΓ of the Schottky group Γ. The complement

P1(k) \ ΛΓ = ΩΓ(k) is the domain of discontinuity of the action of Γ on the boundary.

There is a unique geodesic `γ in Tk with endpoints {z−γ , z+
γ }, the axis of a loxodromic element γ. The

subgroup γZ acts on Tk by translations along `γ. There is a smallest subtree TΓ ⊂ Tk that contains all the

axes `γ of all the nontrivial elements γ ∈ Γ. The boundary at infinity of the subtree TΓ is the limit set ΛΓ.
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TΓ is the non-archimedean analog of the geodesic hull of the limit set of a Schottky group in H3.

The quotient XΓ(k) = ΩΓ(k)/Γ is a Mumford curve with its p-adic Schottky uniformization, [43]. The

quotient Tk/Γ consists of a finite graph TΓ/Γ with infinite trees appended at the vertices of TΓ/Γ, so that

the boundary at infinity of the graph Tk/Γ is the Mumford curve XΓ(k). The finite graph Gk = TΓ/Γ is the

dual graph of the special fiber Xq (a curve over Fq which consists of a collection of P1(Fq) at each vertex

of Gk, connected along the edges). A family of finite graphs Gk,n, for n ∈ N, is obtained by considering

neighborhoods TΓ,n of TΓ inside Tk consisting of TΓ together with all vertices in Tk that are at a distance

at most n from some vertex in TΓ and the edges between them (these trees are preserved by the action of

Γ), and taking the quotients Gk,n = TΓ,n/Γ. The endpoints (valence one vertices) in Gk,n correspond to

the Fqn points in the special fiber, Xq(Fqn), see [37]. One sees in this way, geometrically, how the k-points

in the Mumford curve XΓ(k) are obtained as limits, going along the infinite ends of the graph Tk/Γ, which

correspond to successively considering points of Xq over field extensions Fqn . Conversely, one can view the

process of going into the tree from its boundary XΓ(k) towards the graph Gk in the middle of Tk/Γ as

applying reductions to Fqn . We will see later in the paper how this process should be thought of physically

as a form of renormalization. The finite graph Gk = TΓ/Γ is the non-archimedean analog of the convex

core CΓ of the hyperbolic handlebody HΓ, while the infinite graph Tk/Γ is the non-archimedean analog of

HΓ itself, with the Mumford curve XΓ(k) replacing the Riemann surface XΓ = XΓ(C) as the conformal

boundary at infinity of Tk/Γ.

Geodesics in the bulk space Tk/Γ correspond to images in the quotient of infinite paths without back-

tracking in the tree Tk, with endpoints at infinity on P1(k). Again, one can subdivide these in several

cases. When the endpoints are the attractive and repelling fixed points z±γ of some element γ ∈ Γ, the

path in Tk/Γ is a closed loop in the finite graph Gk. If the endpoints are both in ΛΓ but not the fixed

points of the same group element, then the geodesic is an finite path in Gk that is not a closed loop (but

which winds around several closed loops in Gk without a fixed periodicity). If at least one of the endpoints

is in ΩΓ(k) then the path in Tk/Γ eventually (for either t → +∞ or t → −∞) leaves the finite graph Gk

and wonders off along one of the attached infinite trees towards the boundary XΓ(k) at infinity. We still

refer to these cases as closed, bounded, and unbounded geodesics, as in the archimedean case. We refer

the reader to [25], [39], [43], [47] for a more detailed account of the geometry of Mumford curves.

3 Tensor networks

Motivated by the idea that the Bruhat–Tits tree Tp is a discrete (while still geometric) analogue of anti-

de Sitter space, we will use this section to consider some relations between tensor networks that have been

considered in the literature and the tree. One might imagine that many such relations can be drawn, and
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we have made no effort to be exhaustive; indeed, a primary aim in writing this paper is to bring the p-adic

geometry to the attention of researchers working on tensor-network approaches to holography, who (we

hope) will find it both interesting and useful.

Throughout this section the basic Hilbert spaces in the bulk and the boundary will be those of finite

dimensional qudits and the primary object of study will be the entanglement structure. In §4, the finite

dimensional Hilbert spaces are replaced with those of a field theory valued in R or C. We will find many

aspects of holography hold in this field theoretic model and provide evidence for an exact correspondence.

This connection puts the tensor network models of holography on a more equal footing with dynamical

models, since both are defined from the same discrete spacetime.

We will focus our attention on the networks used by Pastawski, Yoshida, Harlow, and Preskill [45], (or

“HaPPY”), in their construction of holographic quantum error-correcting codes. Such codes are easy to

describe and admit many variations; in the simplest case, they are associated to a regular hyperbolic tiling

of the plane. We will refer to such tilings by their Schläfli symbol; the notation {s, n} refers to a tiling in

which n regular polygons, each with s sides, meet at every vertex. A simple calculation shows that the

tiling is hyperbolic whenever

n >
2s

s− 2
. (3.1)

For instance, if pentagons are used, n = 4 is the smallest possible choice (n = 3 would give the dodecahe-

dron). If the tiles are heptagons or larger, any n ≥ 3 gives a hyperbolic tiling.

Due to constraints of space, we will not fully review the HaPPY construction here; for details, the

reader is referred to the original paper. The key point is that each tile carries a perfect tensor, which

has an even number of indices, each of which refers to a qudit Hilbert space of fixed size. Such tensors

are characterized by the property that any partition of the indices into two equal sets yields a maximally

entangled state; we review perfect tensors in more detail, and construct a family of them associated to

finite fields, in §3.1. Due to the appearance of finite fields in the construction of the tree, we feel this is

the most natural family of tensors to consider.

The gist of our argument is that the natural “geometric” setting of a HaPPY tensor network (for

certain uniform tilings) is the Bruhat–Tits tree corresponding to a prime p. We are motivated in this

argument not only by the algebraic similarity between the constructions of Tp and AdS3, but also by the

fact that field-theoretic models of holography can be defined on the tree which exhibit it as the natural

discrete setting for the AdS/CFT correspondence. In particular, the Bruhat–Tits tree with all edges of

equal length can be thought of as a discrete analog of (empty) Euclidean AdS3, and we conjecture that

it is dual to the vacuum of the CFT living on Qp. It is therefore logical to guess that HaPPY tensor

networks naturally encode information about the entanglement structure of the conformal field theories

living at the finite places, and not about the CFT living at the Archimedean place.
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The precise connection we identify is that, at least for certain choices, the tiling used in HaPPY’s code

(when thought of as a graph) has a spanning tree that is a Bruhat–Tits tree. In some sense, therefore,

the tree represents the union of as many geodesics as can be marked on the tiling without creating closed

paths in the bulk.

In HaPPY’s original paper, a “greedy algorithm” (related to reconstruction of the quantum state input

at the bulk or “logical” qubits of the code) is used to define a region of the bulk, the perimeter of which

is then called a “geodesic.” We will show in §3.4 that tree geodesics can be understood to correspond to

these “greedy” geodesics for the {5, p+ 2} tilings.

An analogue of the Ryu-Takayanagi formula holds for these codes, essentially because the length of

the geodesic counts the number of bonds (contracted tensor indices) that cut across it, and—due to the

properties of perfect tensors—each contributes a constant amount (the logarithm of the qudit dimension)

to the entanglement entropy. For us, it will be crucial to note that the length of a (unique boundary

anchored) tree geodesic is related to the p-adic size of the boundary region it defines. We will elaborate

on this in §5; for now, we will simply remark on a few features of the formula that we will need in this

section.

At the Archimedean place, entanglement entropy measures the entanglement between the degrees of

freedom living on a spatial domain A of a QFT and those living on the complement Ac. In AdS3, the

domain A is usually taken to be an interval, or a collection of intervals. The finite place analogue of an

interval is just an open ball (as defined in §2.1); the notion of “codimension” is counterintuitive in the

p-adic setting! One can see that there is no topological difference between (for instance) an open subset

of the unit circle, which would be an interval in the normal case, and a generic open subset.

If the Ryu-Takayanagi formula holds, the entanglement entropy between A and Ac is given by the

length of the unique geodesic γ (xA, yA) in the Bruhat–Tits tree connecting boundary points xA and yA,

SEE(A) = # · length (γ (xA, yA)) . (3.2)

Just as in the case of AdS3, entanglement entropy is a logarithmically divergent quantity. The divergence

arises because if xA and yA are on the boundary, the number of legs on the geodesic is infinite. To regularize

this divergence, we introduce a cutoff εp such that the length of the geodesic is

length (γ (xA, yA)) = 2 logp

∣∣∣∣xA − yAεp

∣∣∣∣
p

, (3.3)

with | · |p the p-adic norm. (For details about this, see §5.1.) This gives the entanglement entropy between
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A and its complement in Qp as1

SEE(A) = # logp

∣∣∣∣xA − yAεp

∣∣∣∣
p

. (3.4)

The proportionality constant will be left undetermined for now.

3.1 Perfect tensors and quantum error-correcting codes from finite fields

Our goal in this subsection is to recall some features of quantum error-correcting codes associated to

2n-index perfect tensors, as used by Pastawski, Yoshida, Harlow, and Preskill [45]. We will review the

three-qutrit code and associated four-index perfect tensor that they construct, and then show how this

is the case q = 3 of a family of perfect tensors associated to powers q = pm of odd primes. While the

corresponding quantum error-correcting codes are not new [28], our goal is to highlight the properties of

these particular codes that make them relevant to p-adic holography. In particular, as we recalled in §2.5,

each vertex of the Bruhat–Tits tree for a degree-n unramified extension k of Qp is marked with a copy

of the residue field Fpn . As such, finite fields appear as important ingredients both in the construction

of holographic tensor networks and in the algebraic setting of the Bruhat–Tits tree. We feel that the

codes discussed here are natural candidates to consider in connecting p-adic geometry to tensor network

models, although of course this choice is not inevitable and any code with the right properties will define

a holographic code.

3.1.1 The three-qutrit code

In their paper, Pastawski et al consider the following quantum error-correcting code, which encodes a

one-qutrit logical Hilbert space in a three-qutrit physical Hilbert space:

|0〉 7→ |000〉+ |111〉+ |222〉

|1〉 7→ |012〉+ |120〉+ |201〉

|2〉 7→ |021〉+ |102〉+ |210〉 .

The encoded data is protected against erasure of any single qutrit. If we represent the state by a tensor,

|a〉 7→ Tabcd |bcd〉 ,
1For the length of the geodesic between xA and yA to warrant the interpretation of entanglement entropy, it must be the

case that the tensor network bonds cutting across it, when extended all the way to the boundary, connect between A and
Ac. This can be done and is explained in §3.4.
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then Tabcd is perfect in the sense of Pastawski et al, and defines a perfect state:

|ψ〉 = Tabcd |abcd〉 .

(Throughout, we use Einstein’s summation convention.) To recall, a tensor with 2n indices, each rep-

resenting a qudit Hilbert space of any chosen fixed size, is perfect when it satisfies any of the following

equivalent conditions:

• Given any partition of the indices into two disjoint collections A t B, where |A| ≤ |B|, the tensor

defines an injection of Hilbert spaces HA ↪→ HB: a linear map that is a unitary isomorphism of its

domain with its image (carrying the subspace norm).

• The corresponding perfect state is maximally entangled between any tensor factors HA,B of equal

size (each consisting of n qudits). That is, after tracing out n of the 2n qudits, the remaining n-qudit

density matrix is proportional to the identity operator.

It is straightforward to check that the above tensor Tabcd is an n = 2 perfect tensor on qutrits. To rephrase

the way it is constructed so as to make its generalization to larger codes more apparent, we notice that

the particular states that appear in the encoding of a basis state |a〉 are lines of slope a in F2
3: if the three

qudits are labeled by an element x of F3, then the states are of the form ⊗x |f(x)〉, where f(x) = ax + b,

and we sum over the three possible choices of b ∈ F3. The result is a perfect tensor because a line is

determined either by two of its points, or by one point and knowledge of the slope; conversely, given any

two points, or any one point and one slope, exactly one corresponding line exists.

3.1.2 Perfect polynomial codes

We would like to generalize this to a family of perfect tensors in which the qudit Hilbert spaces are of size

q = pm, so that a basis can be labelled by the elements of Fq. An obvious guess is to associate a function

or collection of functions fa : Fq → Fq to each logical basis state |a〉, generalizing the collection of lines

fa(x) = ax + b that were used when q = 3. These functions should have the property that knowledge

of some number of evaluations of fa will uniquely specify a, whereas knowing any smaller number of

evaluations will give no information about a whatsoever. The encoded states will then take the form∑
b (⊗x |fa(x)〉), for some collection of x’s in Fq. Here b stands for a collection of numbers parameterizing

the set of functions fa.

The simplest choice of such a class of functions are polynomials of fixed degree d:

fa(x) = axd + bd−1x
d−1 + · · ·+ b1x+ b0.
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Over the real numbers, d + 1 points determine such a polynomial. Over finite fields, one must be a little

careful—by Fermat’s little theorem,

xq − x = 0 ∀x ∈ Fq.

As such, if d ≥ q, we can’t determine a polynomial uniquely by its evaluations—after all, there are at most

q possible evaluations over a finite field! However, polynomials of degree d < q can be recovered uniquely;

in fact, every function from Fq to Fq is a polynomial function, uniquely represented by a polynomial of

degree d < q (there are exactly q2 elements of each collection).

However, if we choose d too large, the resulting code will not have error-correcting properties: we will

need almost all of the physical qudits to recover the logical one. We know that for codes obtained from 2n-

index perfect tensors, one logical qudit is encoded in 2n− 1 physical qudits, and is recoverable from any n

of them. This is sometimes called a [[2n− 1, 1, n]]q code. For polynomial codes, we must have 2n− 1 ≤ q

(since there are at most q possible evaluations of the code function), and furthermore n = d + 1. Thus,

the largest possible perfect tensor we can obtain from this class of codes has p + 1 indices, corresponding

to the [[q, 1, (q+ 1)/2]]q code; the polynomials used in making this code are of degree d = (q− 1)/2. Recall

that we are assuming p 6= 2 everywhere; q = 3 recovers the linear qutrit code that we discussed above.

To be concrete, when q = 5, the code takes the following form:

|a〉 7→
∑

b0,b1∈F5

|b0, b0 + b1 + a, b0 + 2b1 + 4a, b0 + 3b1 + 4a, b0 + 4b1 + a〉 .

The numbers that appear are just x as the coefficient of b0 and x2 as the coefficient of a. This encoded state

already contains 25 basis states, and the perfect state |ψ5〉 constructed from this tensor is a combination

of 53 = 125 basis states.

These p+1-index perfect tensors seem like logical candidates to use in constructing a family of quantum

codes associated to Bruhat–Tits trees. In particular, they are naturally associated to the data of a finite

field Fq, which appears at each vertex of the tree; moreover, they have q + 1 qudit indices, which agrees

with the valence of the tree.

However, the exact way to combine these ingredients remains a little unclear. In particular, since paths

in the tree correspond to geodesics in the p-adic hyperbolic space, it seems more natural to think of the

legs of the tree as cutting across contractions of tensor indices, rather than representing them. We expand

on this idea in the section that follows.
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3.2 Bruhat–Tits trees and tensor networks

We now investigate the connection between Bruhat–Tits trees and tensor networks. The gist of this section

is that, while the tree corresponds to “geometry,” the tree alone cannot define a tensor-network topology

in the most naive way (tensors at vertices with indices contracted along edges). This is because, in typical

tensor-network models of holography, the Ryu-Takayanagi formula holds because each unit distance along

a geodesic corresponds to a bond (i.e., contracted tensor index) which is “cut” by the path and contributes

a fixed amount (the logarithm of the dimension of the qudit Hilbert space) to the entanglement entropy.

Since the paths in the tree correspond to geodesics in the bulk, one cannot hope to connect the tree to

HaPPY’s holographic code without adding tensors in such a way that their indices are contracted across

the edges of the tree.

The extra structure we need to account for the network can be as simple as grouping the vertices of

the tree in some fashion, associating bulk indices to the groups, and demanding perfect tensor structure,

as we now explain.

A basic set of rules for constructing entanglement: Group the vertices in the tree in

some way; to each grouping we associate one or more bulk vertices. If two groupings share two

tree vertices, then there is a tensor network bond connecting the bulk vertices of the groupings.

The resulting tensor network should be composed of perfect tensors. This constructs a tensor

network mapping between the boundary and the bulk.

It is not clear what the most general rules for associating the tensor vertices to the tree vertices should

be. In particular, we are not demanding planarity (the Bruhat–Tits tree has no intrinsic planar structure),

so the resulting network could be quite complicated, or even pathological. In order for the nice properties

of a bulk-boundary tensor network to hold additional criteria should likely be imposed. We leave the

general form of these criteria for future work; in the following, we focus on one specific set of rules that

works.

3.3 Bruhat–Tits spanning trees of regular HaPPY tilings

Although the most general set of rules for assigning tensors is unclear, HaPPY tensor networks of uniform

tiling can easily be constructed from the minimal proposal above with the addition of a few simple rules.

These extra rules introduce planarity, so that the Bruhat–Tits tree becomes the spanning tree of the

graph consisting of the edges of the HaPPY tensor network tiles. For q > 3, we can construct a HaPPY

tensor network associated to a [[q, 1, (q + 1)/2]]q code by grouping the vertices of the tree into sets of q,

corresponding to tessellation tiles, and adding one bulk vertex to each tile. These tiles are organized into
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“alleyways;” each tile consists of vertices connected by a geodesic for tiles that are the starting points of

alleyways, or of vertices living on two geodesics for tiles along the alleyway (see Fig. 5). The edges of each

tile consist of either q− 1 or q− 2 segments coming from the geodesics, and one or two fictitious segments

(the dotted lines in Fig. 5) respectively, that we draw only to keep track of which tree vertices have been

grouped. Furthermore, each vertex connects to exactly one dashed edge. Since the tree has valence q + 1,

the HaPPY tensor network tiling has q + 2 tiles meeting at each vertex.

The description above works for q > 3. The case q = 2 is special and can be obtained from the [[5, 1, 3]]2

code; this is the case depicted in Fig. 5. In fact, any size polygon could be used; the only real constraint is

that the tiling be hyperbolic of the form {n, q + 2}, with q a prime power. The pathologies of low primes

come from the difficulty in demanding the tiling be hyperbolic and requiring perfect tensors; for instance,

the p = 2 case would require a 3 index perfect tensor, but all perfect tensors have an even number of

indices by construction.

In this picture of tiles, the tensor network bonds can be thought of as cutting across the edges of the

tiles. Indeed, because of planarity, each edge can be associated with the tensor network bond of its vertices,

precisely reproducing the HaPPY construction for uniform tilings of the hyperbolic plane.2

An interesting feature of our construction is that it introduces a peculiar notion of distance on the

boundary, in that points x, y,∈ Qp that are that are far apart (in terms of the norm |x−y|p) can belong to

the same tile, or to neighboring tiles, so they can be “close in entanglement”; this is a concrete manifestation

of the dissociation between entanglement and geometry inherently present in our model.

3.3.1 Explicit tree-to-tessellation mapping

We now explicitly construct an identification between Bruhat–Tits trees and a HaPPY tensor network of

uniform tiling. The end goal is to show that a planar graph of uniform vertex degree v admits a spanning

tree of uniform vertex degree v − 1. Although both the degree of the tree and the size of the tile are

constrained by the quantum error correcting code, for the sake of generality we will work with n-gonal tiles,

n ≥ 5, and trees of valence k, k ≥ 3. The algorithm constructing the mapping proceeds by starting with one

n-gonal tile, then builds regions of tiles moving radially outward. Each region is built counterclockwise.3

The purpose of this algorithm is to build a graph of dashed and solid edges such that every vertex has

degree k + 1 and exactly one dashed edge connecting to it. The HaPPY tensor network tiling is given by

the solid and dashed edges, and the tree is given by the solid edges, as in Fig. 5. The steps of the algorithm

are as follows (see also Fig. 6 for a pictorial representation):

2We should always remember, however, that in our construction, unlike in [45], bulk indices and tensor network connections
are fundamentally associated to groups of tree vertices, and not to the geometric elements of a tile.

3There are, of course, many variations of this algorithm that work; here we only exhibit one of them. For the purposes of
constructing the mapping, it does not matter which variation we use.
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Figure 5: Mapping between a p = 2 Bruhat–Tits tree and the regular hyperbolic tiling {5, 4}. The first
three regions constructed by the algorithm are shown. The red geodesic separates the causal wedge for
the boundary region on which the geodesic ends from its complement in the tree. Since this is p = 2, the
number of edges in a tile is different than our standard choice in the arbitrary q case.

1. Start with an n-gonal tile with one edge dashed and n− 1 solid edges. This is region r = 1. The left

vertex of the dashed line is the current vertex.

2. To construct region r + 1, for the current vertex, add an edge ef extending outward, then go coun-

terclockwise around the tile being created, breaking off the edges shared with region r as soon as a

vertex with degree less than k + 1 is encountered. Call the first new edge after breaking off en. If

either ef or en are constrained (by the condition that in the graph we want to obtain each vertex

has degree k + 1 and precisely one dashed edge connecting to it) to be dashed, make them dashed,

otherwise they are solid. If neither ef nor en are dashed, make the “farthest” edge (call it el) dashed;

otherwise, leave it as a solid edge. el is chosen so that its distance to the existing graph is as large

as possible, and so equal on both sides if possible; if the number of new edges is even, so that this

prescription is ambiguous, the choice closer to ef is taken.

3. Move counterclockwise to the next vertex on the boundary of the current region, skipping any vertices

of degree k + 1. This new vertex becomes the current vertex.
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4. Repeat the step above until we have built an edge ef on all vertices of region r that have degree less

than k + 1. This completes region r + 1.

5. To start on the next region, set the current vertex to be the left vertex of the dashed line on the first

r + 1 tile that we built, then go to step 2 above.

We now show why the algorithm works:

• By induction, there can be no neighboring vertices of degree greater than two on the boundary at any

step, except when building a tile on the next-to-last edge of a tile from the previous region, in which

case a vertex of degree 3 neighbors a vertex of some degree. This is because if the boundary has

no neighboring vertices of degree k + 1, any tile we add shares with the boundary of the previously

constructed tiles at most two edges, so (since n ≥ 5) it will have at least three free edges, adding at

least two vertices of degree 2 between the vertices to which it connects.

• From the previous point, when constructing any tile, the vertices to which ef and en connect cannot

both have degree k before adding ef and en, so either ef or en can be made solid.

• If ef and en are not dashed, then el only connects to two solid edges, so it can be made dashed.

• By the above, each new tile we add introduces exactly one dashed edge, so the graph of solid edges

remains a tree at all steps.

This completes the proof.

3.4 Bulk wedge reconstruction

In this subsection we discuss how bulk reconstruction, in the sense of [45], functions for our proposal.

Although the construction in §3.3 replicates the tensor network tiling of [45], there are some differences of

interpretation.

The algorithm outlined in Pastawski et al.’s paper prescribes that, starting with a given boundary

region, one should add tiles one by one if the bulk qubits they carry can be reconstructed from the known

data; i.e., if one knows (or can reconstruct) a majority of the edge qubits on the tile. When no further

tiles can be added in this manner, the reconstruction is complete, and the boundary of the region is the

“greedy geodesic.”

In our case, for a given drawing of the tree, the first step to reconstructing a boundary open set |xA−yA|p
is to identify a geodesic G that separates the causal wedge for the boundary region on which G ends from

its complement in the tree. This is nontrivial, because due to the non-planarity of the tree, paths that end

on the ball corresponding to the endpoints of the geodesic can be drawn outside the wedge. A G with the
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en

el ef

Figure 6: Mapping between a p = 2 Bruhat–Tits tree and a pentagonal HaPPY tiling, after the third tile
of the second region has been built. Edge en is constrained to be dashed, so edges ef and el are solid. The
arrows represent the direction in which the algorithm constructs regions and tiles.

desired property is a geodesic from which only one path leaves into the complement of the wedge; such

an example is drawn in Fig. 5 in red. Given a choice of planar structure, there is a unique “outermost”

separating geodesic associated to each open set. Once a separating geodesic has been identified, we can

assign xA and yA to its endpoints, the inside of the ball to the tree inside the wedge, and the complement

of the ball to the complement of the wedge in the tree.

For the tilings {5, n}, it is straightforward to see that the greedy geodesic for a boundary open ball

coincides with the tree geodesic G that forms the “boundary” of that open ball in the chosen planar

structure. The alleyways in the diagram are sequences of tiles joined along dashed lines, such that fewer

than half of the edges on each tile are exposed to either side; therefore, each alleyway forms a “firebreak,”

which the greedy algorithm cannot jump across. If none of the dashed edges are known, none of the tiles

in the alleyway can be reconstructed. Therefore, starting at a boundary open set, the greedy algorithm

propagates up the alleyways whose ends lie inside the region, and fills out the region marked off by the

tree geodesic. It cannot stop before the region is filled, since by construction each tile neighbors at least

three tiles that are further away from the center than the tile itself is.

When the tiles are larger than pentagons, a difficulty arises when one is building tiles for which two

edges touch the previous part of the picture: one may be forced (by valence requirements) to build a

dashed edge at en or ef , while another dashed edge exists in the previously built part, a distance of only

one away. An instance where this occurs (although, of course, it causes no problems for pentagonal tiles)
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can be seen at the bottom right corner of Fig. 5. This constructs an alley that could be jumped by the

greedy algorithm.

A simple fix for this problem would be to simply use a pentagon whenever this situation arises, resulting

in a nonuniform tiling where the alleyways still function as firebreaks. While this will produce a valid

holographic code, it is not immediate that the tiling is even regular in this case.

Another option is, if we are willing, to alter the tiling near a specifically chosen geodesic, so that the

problem does not arise for that particular wedge. We explain an algorithm to construct the tiling in this

case. The idea is to construct two alleyways, with the sides with one edge per tile pointing towards the

wedge. This separates the plane into two regions, that for the purposes of tile building don’t talk to each

other. Since the rules for building a tile from Sec. 3.3 are (almost) local, they have no information the

global structure of the row being built. It is thus possible to use them to cover the two regions, moving

“left” and “right” to create rows, and “up” and “down” to stack the rows. We give the explicit steps of

the algorithm (see Fig. 7):

1. Build an alley of k-gons, by starting with a k-gon with one dashed edge (call this the root tile) and

building the successive gons always on the dashed edges. For each k-gon except for the starting one,

the number of solid edges on the two sides of the dashed edges should be 1 and k − 3 respectively,

with all 1’s occurring on one side, and all (k − 3)’s on the other.

2. Build a second alley of k-gons, starting on the solid edge of the root tile that neighbors the root’s

dashed edge on the side of 1’s. For each k-gon except the starting one, the number of solid edges on

the two sides of the dashed edges should be 1 and k− 3 respectively, with all 1’s facing the 1’s of the

first alley. The plane has now been split into two regions: wedge and complement.

3. To construct the tiling inside the wedge, start on some edge of the two central alleyways, and

construct a tile using the rules from point 2 in the algorithm in Sec 3.3. Then move to the right, and

construct new tiles rotating clockwise in the construction of each tile. To do the other side, start

from the initial tile and move left, constructing tiles using the rules from point 2 in the algorithm

while rotating counterclockwise. This fills a “row”.

4. Once the “row” is complete, move to the row “above” it and repeat.

5. To construct the tiling of the complement of the wedge, run the two bullet points above, but having

the clockwise and counter-clockwise rotations swapped, and moving “below” instead of “above”.

This algorithm works because locally the construction is the same as the one in the algorithm of Sec 3.3.

The individual tile building procedure does not depend on whether it is going around a finite region (as in
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Figure 7: Mapping between the tree and tiling for reconstructing a chosen causal wedge. The two central
alleys partition the plane into two regions: the causal wedge of the red geodesic and its complement.
Tilings can be constructed to either side of the shown alley by building tiles via step 2 of the algorithm of
Sec. 3.2.

Sec. 3.3), or along an infinite “row”. And since inside the wedge more than half of each tile’s neighbors

are further away from the center than the tile is, the reconstruction covers the entire wedge.

While in the original HaPPY construction [45] one tensor network suffices to reconstruct the causal

wedge associated to any boundary interval, in our case the tree identifies a certain collection of open sets

on the boundary when pentagonal tiles are used (and, in one possible generalization to larger tiles, may

even treat one boundary region as special). Even for pentagons, there may be many ways to draw the

spanning tree on the same tiling. Moreover, the boundary tiles are not treated on an equal footing: they

form the ends of shorter and longer alleyways. The longer the alleyway in which a boundary tile appears,

the larger the first open set that includes it. One can think of these extra choices as follows: If one were

to draw all possible greedy geodesics on the tiling, all edges would be marked, and there would be no

information. Marking the geodesics with a subgraph is only useful when there is a unique path between

pairs of boundary points, so that one knows “which way” to turn in order to recover the geodesic. This

means that the marked subgraph should have no closed loops: that is, it should be a tree, and the spanning

tree is (by definition) a largest possible subtree.

3.5 Entanglement bridges

By choosing a planar assignment of tensors, we have found the Bruhat-Tits tree as the spanning tree of

this tiling. Although this choice was convenient, it may be somewhat arbitrary. One might ask for more

exotic non-planar way of connecting the tree with tensors. Such a non-planar structure might obscure the
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geometric interpretation, but it is expected that quantum gravity contains non-geometric states, so there

is a sense in which at least small deviations from planarity should be physically acceptable. One simple

example might be to connect two distant parts of the tree together through a non-planar tensor. If this can

be done in a consistent way, one might interpret this non-planar defect a bridge of entanglement between

two points of the tree. It would be interesting to investigate whether a configuration with defects or more

complicated non-planar structures, can be understood in terms of the ER = EPR proposal [34].

Furthermore, the rules we have identified here still generically break symmetries of the tree, since a

PGL(2,Qp) transformation need not preserve the grouping of vertices or the planar structure. One might

hope to construct a tensor network associated to the tree with more minimal auxiliary structure, so that

the full symmetry group of the p-adic bulk spacetime is manifest for the network as well; however, for

the reasons outlined above, it is difficult to understand how to do this while making contact with tensor

network proposals existing in the current literature.

4 p-adic conformal field theories and holography for scalar fields

In this section, we turn from tensor networks to genuine field theories defined on p-adic spacetimes: either

in the bulk of the tree Tp (or possibly a quotient by a Schottky group) or on a p-adic algebraic curve at the

boundary. We will find evidence for a rich holographic structure strongly reminiscent of ordinary AdS/CFT.

The conformal theory on the fractal p-adic boundary is analogous to 1+1 dimensional field theory with a

p-adic global conformal group; our principle example is the p-adic free boson which permits a Lagrangian

description. In the bulk, semi-classical massive scalar fields defined on the lattice model naturally couple

to operators on the conformal boundary in a way that allows for precise holographic reconstruction. One

can also interpret the radial direction in the tree as a renormalization scale. These observations unite

discrete analogs of AdS geometry, conformal symmetry, and renormalization in a holographic way.

4.1 Generalities of p-adic CFT, free bosons, and mode expansions

While non-archimedean conformal field theory has been considered in the literature from several different

perspectives [42, 10, 59], it remains much less well-studied than ordinary two-dimensional CFT. Melzer [42]

defines these theories in general by the existence of an operator product algebra, where all operators in

the theory are primaries with the familiar transformation law under the global conformal group SL(2,Qp).

Descendants are absent in Melzer’s formulation because there is no analogue of the derivative operators ∂

and ∂̄ acting on complex-valued functions over Qp [42], and (correspondingly) no local conformal algebra.

In this formulation, the correlation function between two primary fields φm(x) and φn(y) inserted at
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points x and y and having scaling dimensions ∆n is given (after normalization) by

〈φm(x)φn(y)〉 =
δm,n

|x− y|2∆n
p

. (4.1)

(We will understand this formula holographically in what follows.) As in the archimedean case, as we take

the points x and y to be close together (p-adically), we wish to expand the product as a sum of local field

insertions: the operator product expansion. For two such primaries φm(x) and φn(y), there exists an ε > 0

such that for |x− y|p < ε, the correlation function (perhaps with other primaries φni(xi) inserted) is given

by the expansion:

〈φm(x)φn(y)φn1(x1) . . . φni(xi)〉 =
∑
r

C̃r
mn(x, y)〈φr(y)φn1(x1) . . . φni(xi)〉, (4.2)

where the sum runs over all primaries in the theory, and C̃r
mn(x, y) are real valued. This relation should

hold whenever |x− y|p is smaller than the distances to the xi’s. Invariance under SL(2,Qp) implies

C̃r
mn(x, y) = Cr

mn|x− y|∆r−∆m−∆m
p (4.3)

with constant OPE coefficients Cr
mn.

Theories defined in this way enjoy a number of special properties not true of their archimedean coun-

terparts. They are automatically unitary since they possess no descendant fields. Additionally, because

Qp is an ultrametric field, all triangles are isosceles: for x, y, z ∈ Qp, from the p-adic norm we have

If |x− y|p 6= |y − z|p , then |x− z|p = max {|x− y|p, |y − z|p} . (4.4)

This fundamental property of the p-adic numbers implies that the three- and four-point functions are

exactly determined by the conformal weights and OPE coefficients. In the case of the four-point function,

after an SL(2,Qp) transformation which maps three points to 0, 1, and ∞, the only free parameter (the

cross ratio of the original points) must be contained in a ball in the neighborhood of one of the other points.

Since the OPE is exact in each neighborhood, one can compute the three possible cases and determine the

full four-point function.

In fact, all higher-point functions are constrained by global conformal symmetry alone; by contrast,

the spectrum of OPE coefficients is less constrained than in familiar CFTs. A consistent model can

be constructed using the structure constants of any unital commutative algebra, subject to one simple

condition. These features may be of interest in the study of conformal field theory and conformal blocks,

but we do not pursue that direction here; the interested reader is referred to [42].
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Let us now step back and consider the p-adic theory from the perspective of quantizing a classical field

theory described by a Lagrangian. Many familiar objects from the study of quantum fields over normal

(archimedean) spacetime have direct analogues in the p-adic setting. For example, one frequently makes

use of the idea of a mode expansion of a field on flat spacetime in terms of a special class of basis functions,

the plane waves:

φ(x) =

∫
R
dx eikxφ̃(k). (4.5)

The functions eikx are eigenfunctions of momentum, or equivalently of translations. Mathematically, we

can think of these as additive characters of R: they are group homomorphisms χ : R → C, such that

χ(x+ y) = χ(x)χ(y).

The additive characters of the fields Qp are also known: they take the form [56]

χk(x) = e2πi{kx}. (4.6)

Here k, x ∈ Qp, and the normalization factor 2π is included for convenience (in keeping with the typical

math conventions for Fourier transforms). The symbol {·} : Qp → Q denotes the fractional part of the

p-adic number.4 It is defined by truncating the decimal expansion to negative powers of the prime:{
∞∑
k=m

akp
k

}
=
−1∑
k=m

akp
k, (4.7)

where the right-hand side is interpreted as an ordinary rational number, understood to be zero when the

range of the sum is empty (m is non-negative). Since a p-adic number and its fractional part differ (at

least in a formal sense) by an integer, it makes sense that the complex exponential (4.6) should depend

only on the fractional part of kx. (However, care should be taken: in general, it is not true for rational x

that e2πix = e2πi{x}p ! For instance, 0.1 = 1/10 is a 3-adic integer.)

A wide class of scalar fields on Qp can be expanded in a basis of the additive characters, just like a

mode expansion in the archimedean setting:

φ(x) =

∫
dµ(k) e2πi{kx} φ̃(k). (4.8)

Here dµ(k) is the Haar measure on Qp. The theory of the p-adic Fourier transform is developed in more

detail in Appendix A.

Our principal example (and also by far the most well-studied instance) of a p-adic conformal field theory

4As with other notations referring to the p-adics, we will sometimes use the subscript {·}p when it is necessary for emphasis
or to make reference to a specific choice of prime.
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is the free boson: a single (real or complex) scalar field on P1(Qp) or another p-adic Riemann surface, with

a massless quadratic action. This theory was of interest in the context of p-adic string theory, in which

the worldsheet is a p-adic space, but the target space (and hence all physically observable quantities) are

ordinary. Many results were derived in that literature, including the well-known Freund–Olson–Witten

tachyon scattering amplitudes [24, 23, 11].

Our interpretation of the system in question will be somewhat different, as we will emphasize the

holographic nature of the interplay between field theory defined on a Riemann surface (algebraic curve)

and the study of its hyperbolic filling, a quotient of the Bruhat–Tits tree. (In the p-adic string literature,

it was common to view the tree as playing the role of the “interior” of the worldsheet.) Many of our results

will parallel aspects of the p-adic string, but we will view this theory as a CFT on P1(Qp) without any

reference to a target space.

The p-adic free boson is considered here because it permits a Lagrangian description in terms of the

nonlocal Vladimirov derivative, ∂(p), which acts on complex- or real-valued fields of a p-adic coordinate.

This derivative is defined by

∂n(p)f(x) =

∫
Qp

f(x′)− f(x)

|x′ − x|n+1
p

dx′. (4.9)

In the p-adic string literature, ∂(p) is also known as a normal derivative, for reasons that will become

clear in the following sections. Intuitively, the formula is similar to Cauchy’s representation of the n-th

derivative of a function by a contour integral. A more detailed explanation of its properties is given in

Appendix B. While the parameter n is often taken to be an integer, it may in principle assume any real

value.

One can arrive at the following action either by “integrating out” the interior of the string worldsheet Tp

as done in [58], or by hypothesis as the minimal “quadratic” action of a scalar over a p-adic coordinate[21].

The action for a single scalar is (setting the overall coupling to 1) [50, 60, 27]:

Sp[φ] = −
∫
Qp
φ(x)∂(p)φ(x)dx. (4.10)

where ∂(p)φ(x) is the first Vladimirov derivative of the field φ. We take φ(x) to be a scalar representation

of the conformal group (see [49] for discussion of representations of SL(2,Qp).) Under an element

g =

(
a b

c d

)

of the conformal group, where a, b, c, d ∈ Qp and ad− bc = 1, quantities in the above expression transform
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as

x→ ax+ b

cx+ d
, x′ → ax′ + b

cx′ + d
,

dx→ dx

|cx+ d|2p
, dx′ → dx′

|cx′ + d|2p
,

|x′ − x|−2
p → |(cx′ + d)(cx+ d)|2p|x′ − x|−2

p .

As in [42], a field φn(x) having conformal dimension ∆n transforms as

φn(x)→ φ′n

(
ax+ b

cx+ d

)
= |cx+ d|−2∆n

p φn(x) (4.11)

under the p-adic conformal group. For the free boson φ(x), we claim ∆ = 0. With this one can see the

derivative ∂(p)φ(x) carries a weight |cx + d|−2
p and thus is a field of dimension 1. It should now be clear

that the action Sp[φ] is invariant under the global conformal group.

Given the action Sp[φ], we can define the partition function in the usual way by integrating over

configurations with measure Dφ. As in the case of the p-adic string, because φ is a complex (and not

p-adic) valued field, this integration measure is exactly the one that appears in ordinary field theory:

Zp =

∫
Dφ e−Sp[φ]. (4.12)

As many authors have noted [50, 60, 46]:, this action and the partition function actually describe

a free theory. This means the saddle point approximation to the partition function is exact, and it can

be computed by Gaussian integration exactly as in the case of a real free field. Of more interest in the

present discussion is the two point function. To do this we introduce sources J(x) to define the generating

function:

Zp[J ] =

∫
Dφ exp

(
−Sp[φ] +

∫
Qp
J(x′)φ(x′)dx′

)
. (4.13)

The sources for the 2-point function or propagator take the form of p-adic delta functions at the insertion

points x, y are J(x) = δ(x′− x) + δ(x′− y). Just as in the real case, we vary with respect to φ(x) and find

the classical solution which extremizes the above action. This is the Green’s function for the Vladimirov

derivative G(x− y), satisfying

∂(p)G(x− y) = −δ(x− y). (4.14)

To solve for G(x − y) = 〈0|φ(x)φ(y)|0〉, we apply the p-adic Fourier transform to both sides using

techniques from Appendix A. In Fourier space the derivative brings down one power of the momentum
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and the delta function becomes an additive character:

G̃(k) = −χ(ky)

|k|p
. (4.15)

The 2-point function in position space can be obtained by inverse Fourier transform (with u = x− y):

G(x− y) = −
∫
Qp

χ(k(y − x))

|k|p
dk (4.16)

= −
∫
Qp

χ(ku)

|k|p
dk. (4.17)

This integral is divergent as k → 0. We compute two similar integrals in Appendix B, where the apparent

divergence is canceled by the numerator. Unlike in those examples, this integral really does diverge

logarithmically, just as the 2-point function of a dimension 0 operator in 2d conformal field theory has a

log-divergence. Proceeding as in that case, we introduce a regulator to extract the finite part by computing

lim
α→0

∫
Qp
χ(ku)|k|α−1

p dk. (4.18)

This appears in the second integral computed in the appendix; in terms of the p-adic gamma function

Γp(x) it is:

lim
α→0

∫
Qp
χ(ku)|k|α−1

p dk = lim
α→0

Γp(α)|u|−αp . (4.19)

As α→ 0 the gamma function has a simple pole and the norm has a log piece:

lim
α→0

Γp(α) ≈ p− 1

p ln p

1

α
(4.20)

lim
α→0
|u|−αp ≈ 1− α ln |u|p. (4.21)

Finally we restore u = x− y and find the 2-point function up to normalization is:

〈0|φ(x)φ(y)|0〉 ∼ ln

∣∣∣∣x− ya
∣∣∣∣
p

, a→ 0. (4.22)

This is exactly analogous to the correlator for the ordinary free boson in two dimensions.

4.2 The Laplacian and harmonic functions on Tp

In addition to boundary scalar fields, we will be interested in scalar fields in the “bulk,” i.e., defined on

the Bruhat–Tits tree. Such a field is a real- or complex-valued function on the set of vertices. We will
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also consider fields that are functions on the set of edges; as we will discuss later, such functions will be

analogous to higher-form fields or metric degrees of freedom in the bulk. For now we mention them for

completeness and to fix some standard notation. For more information about fields in the tree, the reader

can consult [58] and references given therein.

We think of the tree as the 1-skeleton of a simplicial complex, and make use of standard notations and

ideas from algebraic topology. The two types of fields mentioned above are just 0- and 1-cochains; we will

refer to the space of such objects as C∗(Tp), where ∗ = 0 or 1.

If an orientation is chosen on the edges of the tree, the boundary operator acts on its edges by ∂e =

te − se, where s and t are the source and target maps. The corresponding coboundary operator acts on

fields according to the rule

d : C0(Tp)→ C1(Tp), (dφ)(e) = φ(te)− φ(se). (4.23)

The formal adjoint of this operator is

d† : C1(Tp)→ C0(Tp), (d†ψ)(v) =
∑
e

±ψ(e), (4.24)

where the sum is over the p + 1 edges adjacent to vertex v, with positive sign when v is the source and

negative sign when it is the target of e. Whether or not d† is actually an adjoint to d depends on the

class of functions being considered; the L2 inner product must be well-defined, and boundary conditions

at infinity must be chosen to avoid the appearance of a boundary term.

Upon taking the anticommutator {d, d†}, we obtain an operator of degree zero, which is the proper

analogue of the Laplacian. We will most often use its action on the 0-cochains, which can be represented

by the formula

4 φ(v) =
∑

d(v,v′)=1

φ(v′)− (p+ 1)φ(v). (4.25)

This is sometimes written using the notation 4p = tp− (p+ 1), where tp is the Hecke operator on the tree.

The analogous formula for 1-cochains is

4 ψ(e) =
∑
e′

±ψ(e′)− 2ψ(e), (4.26)

where the sum goes over the 2p edges adjacent to e at either side. Unlike for the vertices, there is a

dependence on the choice of orientation here: an edge in the sum (4.26) enters with positive sign when

it points in the “same direction” as e, i.e., points out from te or into se. Edges enter with negative sign

when the opposite is true. In the standard picture of the tree with∞ at the top and all finite points of Qp
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at the bottom, oriented vertically, we therefore have exactly one negative term in (4.26), corresponding to

the unique edge above e. Notice that, for general p, the Laplacian acting on edges (unlike on vertices) will

not have a zero mode; this makes sense, since the tree is a contractible space. The exception is p = 2, for

which the standard choice of vertical orientations defines a Laplacian which annihilates constant functions

of the edges. (Of course, the p = 2 tree is still contractible.)

We should remark on one important point: the entire analysis of this paper treats the case where the

edges of the tree have uniform lengths, and argues that this is analogous to a maximally symmetric vacuum

solution in ordinary gravity. It is natural to wonder what the correct analogues of the metric degrees of

freedom actually are. One might speculate that allowing the edge lengths to be dynamical (breaking the

PGL(2,Qp) symmetry) should correspond to allowing the metric to vary; after all, this would vary the

lengths of paths in the tree, which are the only data that seem logically connected to the metric. By

analogy with the Archimedean case, it would then make sense to assume that the edge Laplacian (4.26)

will play a role in the linearized bulk equations of motion for edge lengths around a background solution.

However, we will relegate further investigation of this idea to future work.

4.2.1 Action functional and equation of motion for scalar fields

Equipped with these ingredients, it is now straightforward to write down action functionals and equations

of motion for free scalar fields. The massless quadratic action is

S[φ] =
∑
e

|dφ(e)|2 . (4.27)

In what follows, we will study properties of solutions to the “wave equation” 4φ = 0, and its massive

generalization (4−m2)φ = 0, on the tree. These have been considered in [58].

There is a family of basic solutions to the Laplace equation, labeled by a choice of a boundary point x

and an arbitrary complex number κ. The idea is as follows: Given an arbitrary vertex v in the bulk of the

tree, a unique geodesic (indeed, a unique path) connects it to x. As such, exactly one of its p+ 1 neighbors

will be closer (by one step) to x, and the other p will be farther by one step. Therefore, the function

εκ,x(v) = p−κ d(x,v) (4.28)

will be an eigenfunction of the Hecke operator, with eigenvalue (pκ + p1−κ).

The catch in this is that the distance d(x, v) is infinite everywhere in the bulk. We need to regularize

it by choosing a centerpoint C in the tree, and declaring that d(x,C) = 0. (This just scales the eigen-

function (4.28) by an infinite constant factor). Then d(x, v)→ −∞ as v → x, but we have a well-defined

solution to the Laplace equation everywhere in the tree. These solutions are analogous to plane waves;
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the solution varies as the exponent of the (regularized) distance to a boundary point, which in the normal

archimedean case is just the quantity k · r.

The corresponding eigenvalue of the Laplacian is

4 εκ,x = m2
κεκ,x =

[
(pκ + p1−κ)− (p+ 1)

]
εκ,x. (4.29)

It is therefore immediate that the harmonic functions on the tree (solutions to the massless wave equation)

are those with κ = 0 or 1; κ = 0 is the zero mode consisting of constant functions, whereas κ = 1 is the

nontrivial zero mode. The eigenvalues (4.29) are invariant under the replacement κ → 1 − κ, due to the

inversion symmetry of the boundary theory.

If we are considering a real scalar field, we must be able to write a basis of real solutions. Of course,

when κ is real, we will always be able to do this. More generally, if κ = κ0 + iγ, our solutions look like

ε ∼ p−κ0 de−iγ ln(p) d, p(1−κ0)deiγ ln(p) d. (4.30)

Thus, to construct a basis of real solutions, the following possibilities can occur:

• κ = 1/2. In this case, there is no restriction on γ, and the solutions look like cosines and sines

of γ ln(p) d(x, v), modulated by pd(x,v)/2.

• κ > 1/2.5 In this case, the amplitude parts of the two solutions are linearly independent, and so

exp(iγ ln(p) d) must be real. Since d is an integer, the choices are γ ln(p) = 0 or π (mod 2π).

While it would be interesting to consider solutions with nonzero γ, we will consider only the one-parameter

family of solutions with real κ in the sequel. The parameter m2
κ then attains its minimum value for κ = 1/2.

Considering only solutions of this plane-wave form, we therefore have a bound

m2
κ ≥ −(

√
p− 1)2. (4.31)

Note that we could also rewrite (4.29) in the form

m2
κ = −(p+ 1) + 2

√
p cosh

[(
κ− 1

2

)
ln p

]
. (4.32)

4.3 Bulk reconstruction and holography

It is clear from the definition that, when the real part of κ is positive, the plane wave solution (4.28)

tends to zero everywhere on the boundary, except at the point x (where it tends to infinity). So we can

5Due to the κ 7→ 1− κ symmetry, such a choice is always possible.
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think of it as representing the solution to the Laplace equation (taking κ = 1) in the bulk, with specified

Dirichlet-type boundary conditions that look like a delta function centered at x. By linearity, we can

therefore reconstruct the solution to more general Dirichlet problems by superposition: if the boundary

value is to be a certain function φ0(x) on ∂Tp = P1(Qp), then the required bulk harmonic function is

φ(v) =
p

p+ 1

∫
dµ0(x)φ0(x) ε1,x(v). (4.33)

Here dµ0(x) is the Patterson-Sullivan measure on P1(Qp). The normalization factor can be fixed by taking

the boundary value to be the characteristic function of any p-adic open ball in the boundary.

We can perform the analogous calculation for massive fields as well, but the sense in which φ(v) will

approach φ0(x) as x → v will be more subtle (since the equation of motion will have no constant mode).

Using notation from [58], let δ(a→ b, c→ d) be the overlap (with sign) of the two indicated oriented paths

in the tree, and let

〈v, x〉 = δ(C → v, C → x) + δ(v → x,C → v). (4.34)

This expression makes sense for any bulk vertex v; x may be either a boundary or a bulk point. Note

that 〈z, x〉 is just the negative of the “regularized distance” occurring in our previous discussion.

We would like to compute the bulk solution to the massive equation of motion obtained by integrating

our primitive solution (4.28) over its boundary argument, weighted by a boundary function. As a simple

choice of boundary function, pick the characteristic function of the p-adic open ball below a vertex w in

the tree:

φw(v) =

∫
∂Bw

dµ0(x) pκ〈v,x〉. (4.35)

The integral is straightforward to calculate. There are two cases:

v 6∈ Bw Here, the integrand is constant, and is just equal to pκ〈v,w〉. The measure of the set over which

the integral is performed is µ0(∂Bw) = p−d(C,w), so that the final result is

φw(v) = pκ〈v,w〉−d(C,w). (4.36)

Note that, if v moves towards the boundary along a branch of the tree, 〈v, w〉 differs from−d(C, v)

by a constant, so that the solution scales as p−κ d(C,z).

v ∈ Bw There are now two cases to consider: x ∈ Bv or x 6∈ Bv. In the first scenario, the integrand is

again constant; its value is pκ d(C,v), and the measure is µ0(Bv) = p−d(C,v).

In the second scenario, the geodesic x→ C will meet the geodesic v → C at a distance h above

v; by assumption, 1 ≤ h ≤ d(v, w). For each value of h, the integrand takes the constant value
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pκ(d(C,v)−2h), and the measure of the corresponding set is

µ(h) =
p− 1

p
p−d(C,v)+h. (4.37)

The factor (p − 1)/p enters because p − 1 of the p vertices one step below the meeting vertex

correspond to meeting height h (one of them is closer to v). Putting the pieces together, the

result is

φw(v) = p(κ−1)d(C,v)

1 +
p− 1

p

d(w,v)∑
h=1

(
p1−2κ

)h
=

(
p−2κ − 1

p1−2κ − 1

)
p(κ−1)d(C,v) +

p− 1

p

(
p(2κ−1)d(C,w)

p2κ−1 − 1

)
p−κ d(C,v). (4.38)

The reader can check that we recover the correct answer in the massless case, κ→ 1. Furthermore, our

result is a superposition of the asymptotic behavior of the two eigenfunctions corresponding to the mass

determined by our original choice of κ. To resolve the ambiguity, we will choose κ > 1/2.

At this point, we have accumulated enough understanding of scalar fields on the tree to point out

how the simplest version of holography will work: namely, classical scalar fields in a non-dynamical AdS

background, neglecting backreaction and metric degrees of freedom. In the archimedean case, this version

of holography was neatly formulated by Witten [57] in terms of a few simple key facts. Firstly, the coupling

between bulk scalar fields and boundary operators must relate the asymptotics (and hence the mass) of

the bulk fields to the conformal dimension of the corresponding boundary operators; massless bulk scalars

should couple to marginal operators in the boundary CFT. Secondly, the crucial fact that allows the

correspondence to work is the existence of a unique solution to the generalized Dirichlet problem for the

bulk equations of motion with specified boundary conditions.

Luckily, as we have now shown, all of the important features of the problem persist in the p-adic

setting, and Witten’s analysis can be carried over kit and caboodle to the tree. In particular, we make his

holographic ansatz: 〈∫
P1(Qp)

dµ0 φ0O

〉
CFT

= e−Ibulk[φ], (4.39)

where the bulk field φ is the unique classical solution extending the boundary condition φ0, and O is a

boundary operator to which the bulk field couples. In the massless case, where one literally has φ0(x) =

limv→x φ(z), O is an exactly marginal operator in the CFT.

Given our result (4.38), it is simple to write down the correctly normalized bulk-reconstruction formula
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for massive fields:

φ(v) =
p1−2κ − 1

p−2κ − 1

∫
dµ0(x)φ0(x)pκ〈v,x〉, (4.40)

φ(v) ∼ p(κ−1)d(C,v)φ0(x) as v → x.

When the point v approaches the boundary, the exponent in the kernel becomes

〈v, x〉 = −d(C, v) + 2 ordp(x− y), (4.41)

where y is any boundary point below v. (4.40) then becomes

φ(v) =

(
p1−2κ − 1

p−2κ − 1

)
p−κ d(C,v)

∫
dµ(x)

φ0(x)

|x− y|2κp
. (4.42)

We can now understand why the Vladimirov derivative is a “normal” derivative on the boundary; it

measures the rate of change in the holographic direction of the reconstructed bulk function. In particular,

we have that

lim
v→y

(φ(v)− φ(y))pκd(C,v) =

(
p1−2κ − 1

p−2κ − 1

)∫
dµ(x)

φ0(x)− φ0(y)

|x− y|2κp
=

(
p1−2κ − 1

p−2κ − 1

)
∂2κ−1

(p) φ(y). (4.43)

An argument precisely akin to Zabrodin’s demonstration [58] that the bulk action may be written (upon

integrating out the interior) as a boundary integral of the nonlocal Vladimirov action shows that we can

write Ibulk[φ] in exactly this form. This demonstrates, exactly as in Witten’s archimedean analysis, that a

massive field φ corresponds to a boundary operator of conformal dimension κ, where κ > 1/2 is the larger

of the two values that correspond to the correct bulk mass. Moreover, the boundary two-point function is

proportional to |x− y|−2κ
p , as expected.

4.4 Scale dependence in bulk reconstruction of boundary modes

Let us consider how the mode expansion of a boundary scalar field interacts with the reconstruction of the

corresponding bulk harmonic function. We will be interested in developing the interpretation of the extra,

holographic direction as a renormalization scale in our p-adic context. The idea that moving upward in

the tree corresponds to destroying information or coarse-graining is already suggested by the identification

of the cone above Zp (or more generally any branch of the tree) with the inverse limit

Zp = lim←−Z/pnZ, (4.44)
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where the set of vertices at depth n corresponds to the elements of Z/pnZ, and the maps of the inverse

system are the obvious quotient maps corresponding to the unique way to move upwards in the tree.

A nice intuitive picture to keep in mind is that p-adic integers can be thought of as represented on an

odometer with infinitely many Fp-valued digits extending to the left. Z/pnZ is then the quotient ring

obtained by forgetting all but n digits, so that there is integer overflow; the maps of the inverse system

just forget successively more odometer rings. Since digits farther left are smaller in the p-adic sense, we

can think of this as doing arithmetic with finite (but increasing) precision. The parallel to the operation

of coarse-graining is apparent; however, we will be able to make it more precise in what follows.

Let’s consider a boundary field that is just given by an additive character (plane wave), φ0(x) ∼
exp(2πi{kx}p). Just as in the complex case, a plane wave in a given coordinate system won’t define a

solution of fixed wavelength everywhere on P1(C); the coordinate transformation (stereographic projection)

will mean that the wavelength tends to zero as one moves away from the origin, and the function will become

singular at infinity. Therefore, we should instead consider a boundary function of wavepacket type, that

looks like a plane wave, but supported only in a neighborhood of the origin.

A nice choice to make in the p-adic setting is to take the boundary function to be

φ0(x) = e2πi{kx} ·Θ(x,Zp), (4.45)

where Θ(x, S) is the characteristic function of the set S ⊂ Qp. The transformation (2.17) is actually trivial

inside Zp, so no distortion of the wavepacket occurs at all (unlike for a similar setup in C). Of course, we

ought to take |k|p > 1, so that {kx} is not constant over the whole of Zp.
Given this choice of boundary function, the corresponding solution to the bulk equations of motion can

be reconstructed using the integral kernel (4.33):

φ(v) =
p

p+ 1

∫
Zp
dµ(x) e2πi{kx}p−dC(x,v). (4.46)

Recall that dC(x, v) is the distance from v to x, regularized to be zero at the centerpoint v = C of the

tree. We will calculate this integral when v is inside the branch of the tree above Zp.

Proposition 1. Let v be a vertex in the branch above Zp, at a depth ` (i.e., since v ∈ Zp, distance from

the centerpoint) such that 0 ≤ ` < − ordp(k)− 2. Then the reconstructed bulk function φ(v) is zero.

Proof. The claim relies on the simple fact that the sum of all p-th roots of unity is zero. Since v is above

the red line in Fig. (8) (at depth equal to − ordp(k)− 1), both terms in the integrand are locally constant

below the line, and the integral may be evaluated as a sum along the vertices at the height of the red

line. Furthermore, the factor p−dC(v,x) is constant for each of the p vertices on the line that descend from
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Figure 8: A drawing of Zp (p = 2 for simplicity). Here k = p−4. The marked fractions at vertices indicate
contributions to {kx}, which are summed along the geodesic ending at x.

the same ancestor. Since the measure of each branch is equal, the integral is proportional to the sum of

all p-th roots of unity, and hence to zero. Notice that this also demonstrates that the reconstructed bulk

function is zero everywhere outside Zp: it is zero at the central vertex, and zero on the boundary of the

open ball complementary to Zp.

Even without calculating the explicit form of the bulk function for vertices below the screening height,

this simple argument already allows us to make our physical point: in p-adic holography, the qualitative

features of ordinary AdS/CFT persist in a setting where the bulk geometry is discrete, and in some cases

are even sharpened. For instance, we have shown explicitly that modes for which |k|p is large (i.e. the

short-wavelength behavior of the boundary conditions) must drop out of the reconstructed bulk field,

making exactly zero contribution to it above a height in the tree precisely determined by |k|p. The usual

intuition that moving into the bulk along the holographic direction corresponds to integrating out UV

modes is thus neatly confirmed.

The explicit form of the reconstructed bulk function at vertices below the screening height is easy to

calculate, but less central to our discussion; we leave the computation as an exercise for the reader.
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4.5 The possibility of higher-spin fields

We now wish to propose an analogue of higher-spin fields that could be defined in the p-adic case. While

we will motivate our proposal here, we do not investigate any properties of p-adic CFT with fields other

than scalars. We will return to this question in future work.

We proceed by analogy with two-dimensional CFT, in which the conformal dimension and spin together

describe a character of the multiplicative group C×:

φ(reiθ · z) = r∆eisθφ(z). (4.47)

The group C× ' R×>0 × U(1); the conformal dimension determines a character of the first factor, and

the spin a character of the second, which can be thought of as scale transformations and rotations of

the coordinate respectively. The existence of the logarithm function means that we can think of the

multiplicative group R+ as isomorphic to the additive group R.

The structure of the group of units of any local field is understood (see [44] for details). In particular,

for the field Qp, the result is that

Q×p ' pZ × F×p × U (1), (4.48)

where U (1) is the group of “principal units” of the form 1 + p · a, with a ∈ Zp. This decomposition just

reflects the structure of the p-adic decimal expansion: since the p-adic norm is multiplicative, any number

x 6= 0 can be written in the form

x = pordp(x) (x0 + x1p+ · · · ) , (4.49)

where x0 6= 0 (so that x ∈ F×p ' Cp−1) and the other xi may be any digits chosen from Fp. Dividing

through by x0, one gets

x = pordp(x) · x0

(
1 +

∑
i≥1

x̃ip
i

)
, (4.50)

where x̃i = xi/x0, and the factor in parentheses is a principal unit. A character of Q×p is therefore a triple

of characters, one for each factor in (4.48). The first factor, as in the normal case, corresponds to the

scaling dimension of the field; the last two factors are therefore analogous to the spin. Obviously, the

second factor corresponds to a Z/(p− 1)Z phase. It is also known [44] that the set of characters of U (1) is

countable and discrete.

In fact, we can naively understand a broader class of the characters of Z×p = F×p × U (1). Recall the

description of Zp as the inverse limit of its finite truncations:

Zp = lim←−Z/pnZ. (4.51)
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Since this is an inverse limit of rings, there are therefore projection maps between the respective multi-

plicative groups:

Z×p → (Z/pnZ)× ' Cpn−1(p−1). (4.52)

Therefore, any multiplicative character of a cyclic group Cpn−1(p−1) (i.e., any finite root of unity of order

pn−1(p − 1), for arbitrary n) will give a character of (Z/pnZ)×, which will in turn pull back to define a

multiplicative character of the spin part of Q×p . Spin in the p-adic case is therefore both similar to and

interestingly different from ordinary two-dimensional CFT.

5 Entanglement entropy

The entanglement entropy in quantum field theories is a notoriously difficult and subtle quantity to com-

pute, and much effort has been expended in developing a toolbox of techniques that provide exact results.

One of the first systems in which the computation became tractable was two-dimensional conformal field

theory, and in particular the theory of free bosons. Since we are primarily considering the free boson in our

discussion, one might hope that the same techniques can be applied in the p-adic case. While we believe

that this is the case, and plan to give a full calculation of the entanglement entropy in future work, there

are subtleties that arise in each technique and prevent it from being used naively. We will demonstrate

these techniques, illustrate the subtle issues that arise, and justify our conjecture for the entanglement

entropy in what follows.

As in the real case, we expect the entanglement entropy to have UV divergences. These are normally

thought of as localized to the “boundary” of the region under consideration. Care must be used in defining

what we mean by interval and boundary; the p-adic numbers have no ordering, and every element of an

open set is equally (or equally not) a boundary element.

Whenever possible, we must think in terms of open sets. Over the reals, the open sets are intervals

with measure or length given by the norm of the separation distance of the endpoints; as the reader will

recall, p-adic open sets are perhaps best visualized using the Bruhat–Tits tree. Once a center C of the tree

is picked, we can pick any other vertex v and consider the cone of points below v extending out towards

the boundary, which is an open neighborhood in P1(Qp). A perhaps surprising fact which follows from the

definition of the p-adic norm |x− y|p (x, y ∈ P1(Qp)) is that it is related to the height of the cone required

to connect x to y (see Fig. 9).

Following standard arguments, say of [51, 16], we can pick the boundary cone below the point v to be

called the region V . The total Hilbert space on Qp splits into Hilbert spaces on V and its complement,

H = HV ⊗H−V . The entanglement entropy defined by S(V ) = − tr(ρV log ρV ) and by construction satisfies

S(V ) = S(−V ). As there are an infinite number of points xi ∈ V ∈ P11
(Qp), there is an unbounded number
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of local degrees of freedom φ(xi) as is typical of quantum field theory. In the continuum case this implies

logarithmic divergences from modes in V entangled with those in −V , and we expect the same to be true

in the p-adic case.

In the works of Cardy and Calabrese [12, 13], the entanglement entropy for intervals in 1+1-dimensional

conformal field theories are explicitly calculated. The p-adic field theories considered here are exactly

analogous to the two-dimensional free boson; in both, the scalar φ(x) has conformal dimension zero and

(as we have shown above) a logarithmically divergent propagator. We wish to understand how much of

their calculation can be duplicated in the p-adic case. These authors generally follow a series of steps

beginning with the replica trick, which is the observation that n powers of the reduced density matrix ρV

can be computed by evaluating the partition function on a Riemann surface obtained by gluing n copies

of the theory together along the interval V . The entanglement entropy follows from analytic continuation

of these results in n, followed by the limit n→ 1, according to the formula

tr(ρnV ) =
Zn(V )

Zn
1

, SV = − lim
n→1

∂

∂n

Zn(V )

Zn
1

, (5.1)

where Zn(V ) is the n-sheeted partition function and Z1 is the partition function of 1 sheet with no gluing,

which is required for normalization.

In 1 + 1 dimensions, the n sheeted partition function can be viewed as a Riemann surface, and the

holomorphic properties of this surface make the calculation tractable. In particular, if the interval has the

boundary points x and y, the complicated world sheet topology can be mapped to the target space by

defining multi-valued twist fields Φn(x),Φn(y) on the plane whose boundary conditions implement the n

sheeted surface. One can find that tr(ρnV ) behaves exactly like the nth power of a two point function of the

twist fields, once their conformal dimension has been determined using Ward identities:

tr(ρnV ) ∼ 〈0|Φn(x)Φn(y)|0〉n ∼
(
x− y
ε

)− c
6

(n− 1
n

)

(5.2)

where c is the central charge and ε is a normalization constant from Z1. When n = 1 exactly, the twist

fields have scaling dimension 0 and the above correlator no longer makes sense. Instead, taking the limit

as n → 1, the linear term is −n c
3

ln
(
x−y
ε

)
. Taking the derivative gives the famous universal formula for

the entanglement entropy [30].

The difficulty in performing the same calculation over the p-adics consists in fixing the dimensions of

the twist operators. These operators can be defined just as in the normal case; after all, all that they do is

implement certain boundary conditions at branch points on the fields in a theory of n free bosons. However,

the usual arguments that fix their dimension rely on the existence of a uniformizing transformation z 7→ zn
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that describes the relevant n-sheeted branched cover of P1 by P1; the Schwarzian of this holomorphic (but

not Möbius) transformation then appears as the conformal dimension. The argument using the OPE with

the stress tensor is identical in content. Both cases rely on the existence of holomorphic (but not fractional-

linear) transformations, and a measure—the Schwarzian or conformal anomaly—of their “failure” to be

Möbius.

In the p-adic case, this is related to the question of local conformal transformations; it has been sug-

gested [42] that no such symmetries exist. Moreover, since Qp is not algebraically closed, a transformation

like z 7→ zn need not even be onto. Nevertheless, we can still define the twist operators, and we suppose

that they transform as primaries with some conformal dimensions ∆n. Their two-point function then gives

the density matrix. This function is:

〈0|Φ(p)
n (x)Φ(p)

n (y)|0〉n ∼
∣∣∣∣x− yε

∣∣∣∣−2n∆n

p

(5.3)

where ∆n are the model-dependent (and unknown) conformal dimensions. Inserting this ansatz into

− limn→1
∂
∂n

tr(ρnV ) and taking the limit n→ 1, ∆n → 0 gives:(
2n
∂∆n

∂n

∣∣
n=0

)
ln

∣∣∣∣x− yε
∣∣∣∣
p

. (5.4)

While this is not a proof, it provides some evidence for the expected logarithmic scaling of the entropy. We

expect that the dimensions ∆n → 0 as n → 1, since of course the twist operator on one sheet is just the

identity. If we could fix the conformal dimension without using the conformal anomaly, this calculation

would fix not only the logarithmic form of the answer, but also the coefficient that plays the role of the

central charge. It may be possible to do this by examining the path integral with twist-operator insertions

directly.

A possible way around this difficulty might be to consider a harder problem first: to think about

two intervals rather than one. The genus of the Riemann surface that appears in the replica trick is

g = (n − 1)(N − 1); thus, for one interval, we are considering a branched cover of P1 over itself, and

the conformal anomaly is a necessary ingredient. However, one might hope that for two intervals, we can

simply compute the partition function on a series of higher-genus Riemann surfaces (which is understood in

the p-adic case), and take the limit as the genus approaches zero. Discussions of the entanglement entropy

in terms of Schottky uniformization—which therefore appear tailored to our needs—have appeared in the

literature [22].

Two difficulties appear in this case: the first is matching the moduli of the Riemann surface in question

to the lengths of the intervals; the second is more subtle, and reflects the fact that, over the p-adics, not
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every branched cover of P1 is a Mumford curve [9]. We believe that one of the strategies outlined here

will succeed in producing a rigorous computation of the entanglement entropy, but we must relegate that

computation to future work.

5.1 Ryu-Takayanagi formula

Let us take as given the conjecture from the previous section that the entanglement entropy of a region in

the boundary CFT should be computed as the logarithm of its p-adic size. We take our interval to be the

smallest p-adic open ball which contains points x and y. This interval has size |x− y|p. To understand the

Ryu-Takayanagi formula, it remains to compute the length of the unique geodesic connecting x to y. The

tree geometry for this setup is depicted in Fig. 9. Since there are an infinite number of steps required to

reach the boundary, the geodesic length is formally infinite, just as in the real case. We regulate this by

cutting off the tree at some finite tree distance a from the center C, which can be thought of as ordp(ε)

for some small p-adic number ε. We will then take this minimum number ε → 0 (p-adically). This limit

will push the cutoff in the tree to infinite distance from C.

A SL(2,Qp) transformation can always be used to move the points x and y to the Zp part of the tree

first to simplify the argument. Then introducing the distance cutoff a effectively truncates the decimal

expansions of x and y to the first a decimal places. In the case where |x− y|p = 1, the geodesic connecting

the two points passes through C and has length 2a. If |x − y|p < 1, the geodesic is shorter by a factor

of 2d, where |x − y|p = p−d. Roughly speaking, as can be seen in Fig. 9, smaller boundary regions are

subtended by shorter geodesics in the tree.

We see that the cutoff-dependent distance is

d(x, y)a = 2a+
2

ln p
ln |x− y|p. (5.5)

We would like to take a→∞. Up to the factor of ln p, we can define a to be the logarithm of a p-adic

cutoff ε such that a → ∞ as ε → 0. Using this definition, we find the length of a boundary-anchored

geodesic to be

d(x, y) = lim
ε→0

2

ln p
ln

∣∣∣∣x− yε
∣∣∣∣
p

. (5.6)

Up to the overall factor in front (which presumably depended on our choice of the length of each leg of

the tree), we see the geodesic length is logarithmically divergent in interval size.
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∞

0

C

x y

|x− y|p = p−d

x′ y′

d

Figure 9: Boundary anchored geodesics in Tp have a natural interpretation in terms of the p-adic norm.
Once the arbitrary position of the center C is fixed, the norm of open sets in Qp is given by p−d, where d
is the integer number of steps from C required before the path to the endpoints splits. In this example,
|x− y|p is described by the red geodesic and the value is p−2. The set corresponding to the green geodesic
has a smaller norm by a factor of p because the vertex is 1 step further down the tree. As in the case of real
AdS, the length of the geodesic is formally infinite because an infinite number of steps is required to reach
the boundary. One may introduce a cutoff corresponding to truncation of the tree at a fixed distance, then
take the limit as this cutoff goes to zero. It should be apparent that the (formally infinite) red geodesic
is longer than the green one by two steps. Up to constant factors, the length of any boundary-anchored
geodesic is an infinite term minus d. This explains the logarithmically divergent scaling of geodesic length
with p-adic norm.

49



5.2 An adelic formula for entanglement?

We have argued that the general form of entanglement entropy scaling for the boundary theory is dual to

a geodesic length in the bulk. At the present time we lack a p-adic notion of central charge c or theory

dependent quantity which counts boundary degrees of freedom. Nevertheless, we claim the general form is

Sp(x− y) = cp ln

∣∣∣∣x− yεp

∣∣∣∣
p

. (5.7)

We now wish to speculate about the possibility of an adelic formula for the entanglement entropies.

In the study of p-adic numbers, there exists a surprising formula which relates the various p-adic

valuations of a rational number to its real norm. This is a different form of the fundamental theorem of

arithmetic, and is sometimes known as an adelic formula:

∞∏
p

|x|p = 1. (5.8)

Here x ∈ Q and the product is taken over all primes. The “prime at ∞” corresponds to the usual

archimedean norm |x|∞ = |x|. This equality follows by considering the unique prime factorization of x into

a product of prime powers. When x contains a factor pn, then |x|p = p−n. This means the infinite product

over primes is well defined because only finitely many terms are not equal to 1. In fact, the product over

the finite primes gives exactly the inverse of the real norm |x|. Therefore the product over all finite places

and the infinite place is unity.

We now wish to again recall the familiar formula for the universal entanglement entropy of an interval

in a 1+1 dimensional conformal field theory; written suggestively in the “prime at infinity” notation:

S∞(x− y) =
c

3
ln

∣∣∣∣x− yε∞

∣∣∣∣
∞
. (5.9)

One might hope through a better understanding of p-adic conformal field theory or the holographic dual,

the value of the proportionality constant or the p-adic central charge might be determined. In the (perhaps

unlikely) event that the central charges of the p-adic theory agree with the real case, then using the adelic

formula for the interval, we propose:

If cp = c/3 for all p and x− y ∈ Q, then

∞∑
p

Sp(x− y) ∝ ln

(
∞∏
p

∣∣∣∣x− yεp

∣∣∣∣
p

)
= 0. (5.10)
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One might be suspicious about this formula; each of the entropies Sp are formally divergent. Additionally,

since these quantities are entropies they are expected to be positive. Therefore care must be taken in

interpreting the above.

One possible resolution is the erroneous application of the adelic formula to the cutoffs εp. In computing

Sp holographically, we assumed |ε|p → 0. However, if |εp|p → 0 in one norm, it is not generally true that

|εp|p′ → 0 for another choice p′. Therefore, we require a numerically different cutoff parameter εp for

each system over p. As all these parameters are taken to 0 in their respective norms, the corresponding

entanglement entropies diverge.

Understanding that the cut offs εp do not cancel on the left or right hand sides, we are left with the

divergent pieces of the entropy being equal on both sides. However, if we vary the length of |x−y|∞ in the

real physical system, we see that the entropy difference associated with this interval is distributed across

the Sp’s such that the sum is zero. Put another way, varying the real interval length will cause some values

of |x− y|p for different p to increase and others to decrease. This causes some Sp to increase and others to

decrease such that the total change of entropy over all finite and infinite places is 0.

We will leave it to future work to try to derive or understand this relation further.

6 p-adic bulk geometry: Schottky uniformization and non-archi-

medean black holes

6.1 Holography for Euclidean higher-genus black holes

The first explicit form of AdS/CFT correspondence for the asymptotically AdS3 higher genus black holes,

in the Euclidean signature, was obtained in [40], where the computation of the Arakelov Green function

of [36] is shown to be a form of the holographic correspondence for these black holes, where the two-point

correlation function for a field theory on the conformal boundary XΓ is written in terms of gravity in the

bulk HΓ, as a combination of lengths of geodesics.

At the heart of Manin’s holographic formula lies a simple identity relating conformal geometry on P1(C)

and hyperbolic geometry on H3, namely the fact that the cross ratio of four points on the boundary P1(C)

can be written as the length of an arc of geodesic in the bulk H3. More precisely, consider the two point

correlation function g(A,B) on P1(C). This is defined by considering, for a divisor A =
∑

xmx x, the

Green function of the Laplacian

∂∂̄gA = πi(deg(A)dµ− δA),

with δA the delta current associated to the divisor, δA(ϕ) =
∑

xmxϕ(x), and dµ a positive real-analytic

2-form. The Green function gA has the property that gA−mx log |z| is real analytic for z a local coordinate
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near x, and is normalized by
∫
gAdµ = 0. For two divisors A,B, with A as above and B =

∑
y ny y the

two point function is given by g(A,B) =
∑

y nygA(y). For degree zero divisors it is independent of the

form dµ and is a conformal invariant. If wA is a meromorphic function on P1(C) with Div(wA) = A, and

CB is a 1-chain with boundary B, the two point function satisfies

g(A,B) = Re

∫
CB

dwA
wA

.

For (a, b, c, d) a quadruple of points in P1(C), the cross ratio 〈a, b, c, d〉 satisfies

〈a, b, c, d〉 =
w(a)−(b)(c)

w(a)−(b)(d)
,

where (a)−(b) is the degree zero divisor on P1(C) determined by the points a, b, and the two point function

is

g((a)− (b), (c)− (d)) = log
|w(a)−(b)(c)|
|w(a)−(b)(d)|

.

Given two points a, b in P1(C), let `{a,b} denote the unique geodesics in H3 with endpoints a and b. Also

given a geodesic ` in H3 and a point c ∈ P1(C) we write c ∗ ` for the point of intersection between ` and

the unique geodesic with an endpoint at c and intersecting ` orthogonally. We also write λ(x, y) for the

oriented distance of the geodesic arc in H3 connecting two given points x, y on an oriented geodesic. Then

the basic holographic formula identifies the two point function with the geodesic length

g((a)− (b), (c)− (d)) = −λ(a ∗ `{c,d}, b ∗ `{c,d}).

One can also express the argument of the cross ratio in terms of angles between bulk geodesics (see [36],

[40]). This basic formula relating the two point correlation function on the boundary to the geodesic

lengths in the bulk is adapted to the higher genus cases by a suitable procedure of averaging over the

action of the group that provides an explicit construction of a basis of meromorphic differentials on the

Riemann surface XΓ in terms of cross ratios on P1(C). A basis of holomorphic differentials on XΓ, with∫
Ak

ωγj = 2πiδjk,

∫
Bk

ωγj = τjk

the period matrix, is given by

ωγi =
∑

h∈S(γi)

dz log〈z+
h , z

−
h , z, z0〉,

for z, z0 ∈ ΩΓ, with S(γ) the conjugacy class of γ in Γ. The series converges absolutely when dimH(ΛΓ) < 1.
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Meromorphic differentials associated to a divisor A = (a)− (b) are similarly obtained as averages over the

group action

ν(a)−(b) =
∑
γ∈Γ

dz log〈a, b, γz, γz0〉

and the Green function is computed as a combination ν(a)−(b)−
∑

j Xj(a, b)ωγj with the coefficients Xj(a, b)

so that the Bk-periods vanish. Since in the resulting formula each crossed ratio term is expressible in terms

of the length of an arc of geodesic in the bulk, the entire Green function is expressible in terms of gravity in

the bulk space. We refer the reader to §§2.3, 2.4, and 2.5 of [40] and to [41] for a more detailed discussion

and the resulting explicit formula of the holographic correspondence for arbitrary genus.

6.2 Holography on p-adic higher genus black holes

In the special case of a genus-one curve, the relevant Schottky group is isomorphic to qZ, for some q ∈ k∗,

and the limit set consists of two points, which we can identify with 0 and∞ in P1(k). The generator of the

group acts on the geodesic in Tk with endpoints 0 and∞ as a translation by some length n = log |q| = vm(q),

the valuation. The finite graph Gk is then a polygon with n edges, and the graph Tk/Γ consists of this

polygon with infinite trees attached to the vertices. The boundary at infinity of Tk/Γ is a Mumford curve

XΓ(k) of genus one with its p-adic Tate uniformization. The graph Tk/Γ is the p-adic BTZ black hole,

with the central polygon Gk as the event horizon. The area of the black hole and its entropy are computed

by the length of the polygon (see Fig. 10).

The higher genus cases are p-adic versions of the higher genus black holes discussed above, with the

finite graph Gk as event horizon, and its geodesic length proportional to the black hole entropy.

Given a set of generators {γ1, . . . , γg} of a p-adic Schottky group, let nγi be the translation lengths

that describe the action of each generator γi on its axis `γi . More precisely, if an element γ is conjugate in

PGL(2,k) to an element of the form (
q 0

0 1

)
,

then the translation length is nγ = vm(q) = ordk(q), the order (valuation) of q. The translation lengths

{nγi} are the Schottky invariants of the p-adic Schottky group Γ. It is shown in [15] that the Schottky

invariants can be computed as a spectral flow.

The Drinfeld–Manin holographic formula of [35] for p-adic black holes of arbitrary genus is completely

analogous to its archimedean counterpart of [36]. There is a good notion of k-divisor on P1(k), as a

function P1(k̄)→ Z, with z 7→ mz, with the properties that mz1 = mz2 if z1 and z2 are conjugate over k;

that all points z with mz 6= 0 lie in the set of points of P1 over a finite extension of k; and that the set of

points with mz 6= 0 has no accumulation point. As before we write such a divisor as A =
∑

zmz z. Given
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Figure 10: The p-adic BTZ black hole. (As pictured, p = 3).

a Γ-invariant divisor A of degree zero, there exists a meromorphic function on ΩΓ(k) with divisor A. It is

given by a Weierstrass product

WA,z0 =
∏
γ∈Γ

wA(γz)

wA(γz0)
,

where wA(z) is a k-rational function on P1(k) with divisor A. The convergence of this product is discussed

in Proposition 1 of [35]: the non-archimedean nature of the field k implies that the product converges

for all z ∈ ΩΓ \ ∪γγ(supp(A)). The function WA,z0 is a p-adic automorphic function (see [39]) with

WA,z0(γz) = µA(γ)WA,z0(z), with µA(γ) ∈ k∗, multiplicative in A and γ. One obtains a basis of Γ-invariant

holomorphic differentials on XΓ(k) by taking

ωγi = d logW(γi−1)z0,z1 ,

where

W(γ−1)z0,z1(z) =
∏

h∈C(γ)

whz+γ −hz−γ (z)

whz+γ −hz−γ (z0)
,

for C(g) a set of representatives of Γ/γZ.
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Figure 11: Drinfeld’s p-adic upper half plane and the Bruhat–Tits tree.

It is shown in [35] that the order of the cross ratio on P1(k) is given by

ordk
wA(z1)

wA(z2)
= #{`z1,z2 , `a1,a2},

for A = a1 − a2 and `x,y the geodesic in the Bruhat–Tits tree with endpoints x, y ∈ P1(k), with

#{`z1,z2 , `a1,a2} the number of edges in common to the two geodesics in Tk. This is the basic p-adic

holographic formula relating boundary two point function to gravity in the bulk.

A difference with respect to the Archimedean case is that, over C, both the absolute value and the

argument of the cross ratio have an interpretation in terms of geodesics, with the absolute value expressed

in terms of lengths of geodesic arcs and the argument in terms of angles between geodesics, as recalled

above. In the p-adic case, however, it is only the valuation of the two point correlation function that has
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an interpretation in terms of geodesic lengths in the Bruhat–Tits tree. The reason behind this discrepancy

between the archimedean and non-archimedean cases lies in the fact that the Bruhat–Tits tree Tk is

the correct analog of the hyperbolic handlebody H3 only for what concerns the part of the holographic

correspondence that involves the absolute value (respectively, the p-adic valuation) of the boundary two

point function. There is a more refined p-adic space, which maps surjectively to the Bruhat–Tits tree, which

captures the complete structure of the p-adic automorphic forms for the action of a p-adic Schottky group

Γ: Drinfeld’s p-adic upper half plane, see Chapter I of [7]. Given k as above, let Cp denote the completion

of the algebraic closure of k. Drinfeld’s p-adic upper half plane is defined as Hk = P1(Cp)\P1(k). One can

view this as an analog of the upper and lower half planes in the complex case, with H+∪H− = P1(C)\P1(R).

There is a surjection λ : Hk → Tk, defined in terms of the valuation, from Drinfeld’s p-adic upper half

plane Hk to the Bruhat–Tits tree Tk. For vertices v, w ∈ V (Tk) connected by an edge e ∈ E(Tk), the

preimages λ−1(v) and λ−1(w) are open subsets of λ−1(e), as illustrated in Fig. 11. The map λ : Hk → Tk

is equivariant with respect to the natural actions of PGL(2,k) on Hk and on Tk. In particular, given a

p-adic Schottky group Γ ⊂ PGL(2,k), we can consider the quotients H̃Γ = Hk/Γ and HΓ = Tk/Γ and

the induced projection λ : H̃Γ → HΓ. Both quotients have conformal boundary at infinity given by the

Mumford curve XΓ = ΩΓ(k)/Γ, with ΩΓ(k) = P1(k) r ΛΓ, the domain of discontinuity of the action of

Γ on P1(k) = ∂Hk = ∂Tk. One can view the relation between Hk and Tk illustrated in Fig. 11, and the

corresponding relation between H̃Γ and HΓ, by thinking of H̃Γ as a “thickening” of the graph HΓ, just as

in the Euclidean case one can view the union of the fundamental domains of the action of Γ on H3, as

illustrated in Fig. 4, as a thickening of the Cayley graph (tree) of the Schottky group Γ, embedded in H3.

Thus, when considering the non-archimedean holographic correspondence and p-adic black holes of

arbitrary genus, one can choose to work with either HΓ or with H̃Γ as the bulk space, the first based on

Bruhat–Tits trees and the second (more refined) based on Drinfeld’s p-adic upper half spaces. In this paper

we will be focusing on those aspects of the non-archimedean AdS/CFT correspondence that are captured

by the Bruhat–Tits tree, while we will consider a more refined form of non-archimedean holography, based

on Drinfeld’s p-adic upper half planes, in forthcoming work.

6.3 Scalars on higher-genus backgrounds: sample calculation

In light of this discussion of higher-genus holography in the p-adic case, it is easy to understand how to

generalize the arguments and calculations we discussed for scalar fields in §4 to the BTZ black hole, or to

higher-genus hyperbolic handlebodies, the p-adic analogues of Krasnov’s Euclidean black holes. One can

simply think of the higher-genus geometry as arising from the quotient of the tree Tp (and its boundary

P1(Qp)) by the action of a rank-g Schottky group. Any quantity that can then be made equivariant under

the action of the Schottky group will then descend naturally to the higher-genus setting.
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Figure 12: The action of a rank-one Schottky group (translation by ` along a fixed geodesic) on the
Bruhat–Tits tree. As pictured, n = h = 2.

As a simple example, it is easy to construct the genus-1 analogue of our basic Green’s function (4.28),

using the method of images. We perform this calculation in the following paragraphs. The result makes

it easy to perform the reconstruction of bulk solutions to the equations of motion in a BTZ background,

with specified boundary conditions at infinity along the genus-1 conformal boundary.

Without loss of generality, we can label the distance along the geodesic which is translated by the

chosen Schottky generator by integers, and imagine that the source is attached at a boundary point x

connected to the vertex 0. The bulk vertex v at which we want to evaluate the Green’s function will be

attached to vertex n (0 ≤ n < `), at a depth h from the central geodesic. The quantity to be calculated is

simply

ε(g=1)
κ,x (v) =

∑
g∈Z

pκ〈v,gx〉, (6.1)

where the sum ranges over the images of x under the Schottky group. We take the integrand to be

normalized to 1 at the vertex where the branch containing x meets the central geodesic. The cases n = 0

and n 6= 0 are different, and we will treat them separately.

n = 0: In this case, the sum becomes

εκ,x(v) = pκ〈v,x〉 + 2
∑
m>0

(
p−κ`

)m
= pκ〈v,x〉 +

2p−κh

pκ` − 1
. (6.2)

n 6= 0: In this case, the sum becomes

εκ,x(v) =
∑
m≤0

pκ(−n−h−|m|`) +
∑
m>0

pκ(n−h−m`)

= p−κh
(
pκ(`−n) + pκn

pκ` − 1

)
. (6.3)
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In both cases, the result has the expected boundary behavior: it falls off asymptotically as p−κh when v

approaches any boundary point other than x itself.

7 Conclusion

In this work we have proposed an algebraically motivated way to discretize the AdS/CFT correspondence.

The procedure of replacing real or complex spacetimes by Qp introduces a nontrivial discrete bulk and

boundary structure while still preserving many desirable features of the correspondence. The boundary

conformal field theory lives on an algebraic curve in both the ordinary and non-archimedean examples; the

P1(Qp) theory naturally enjoys the p-adic analogue of the familiar global conformal symmetry, PGL(2,Qp).

This same group comprises the isometries of the lattice bulk spacetime Tp = PGL(2,Qp)/PGL(2,Zp), a

maximally symmetric coset space analogous to Euclidean AdS.

In analogy with the BTZ black hole and higher genus examples in AdS3, higher genus bulk spaces in

the p-adic case are obtained by Schottky uniformization. One takes quotients of the geometry by p-adic

Schottky groups Γ ⊂ PGL(2,Qp), producing Mumford curves at the boundary. These curves holographi-

cally correspond to bulk geometries consisting of discrete black holes, which appear automatically and do

not need to be put in by hand.

Having found a discretization which does not break any symmetries of the problem, we then proposed

one way of obtaining a holographic tensor network from a Bruhat–Tits tree. We roughly identify the tree

as a space of discrete geodesics in the network. Following Pastawski et al.’s holographic error-correcting

code, the entanglement entropy of a deleted region is reproduced by counting geodesic lengths in the bulk.

This perspective puts a stronger notion of bulk geometry into tensor networks, and suggests that the p-adic

systems considered here may be closer to tensor network models than their archimedean counterparts. This

construction might have further applications in entangled bulk states, nongeometric bulk states, and other

more exotic features of quantum gravity not present in many existing tensor network models.

After discrete bulk Hilbert spaces in tensor networks, we then turned our attention to continuous Hilbert

spaces of scalar fields in the tree. In the semiclassical analysis, massless and massive scalar solutions to

the lattice model couple naturally to CFT operators at the boundary, just as in the archimedean case. We

identified boundary/bulk propagators in the discrete analog of empty AdS, as well as in the p-adic BTZ

black hole; the method of images can be used to generalize these results to arbitrary higher-genus bulk

backgrounds. We are led to believe that the semiclassical physics of the bulk “gravity” theory is dual to an

exotic conformal field theory living on the fractal p-adic boundary. At the present time, little is known about

these p-adic conformal field theories outside of p-adic string theory; we hope the connection to holography

may draw attention to this area. Viewed as a renormalization scale, we have shown that moving up the
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tree corresponds to exact course graining of boundary mode expansions. The intimate relation between

conformal symmetry, AdS geometry, and renormalization still holds in this entirely discrete setting.

Motivated by the tensor network models, we suggest that the entanglement entropy of regions of the

field theory is computed by the unique geodesic lengths in the bulk space. While as of yet we have no

formal proof in the free-boson field theory, a number of arguments have been presented which support this

conjecture. Under very specific circumstances, it might even be possible to learn certain properties of the

archimedean entanglement entropies from their corresponding p-adic counterparts with the help of adelic

formulas.

While we have established some essential features of p-adic holography, ranging from algebraic curves to

tensor networks and from bulk/boundary propagators and renormalization scales to entanglement, much

about these exotic systems remains to be understood. We propose a number of ideas to be explored in

future work.

One major ingredient missing from our story is a proper description of (and quantization of) the

gravitational degrees of freedom. The bulk geometries (with or without black holes in the interior) can

loosely be described as p-adic discretizations of asymptotically AdS spacetimes. One way to add dynamical

metric degrees of freedom without spoiling the asymptotic behavior might be to make the edge lengths of

the Bruhat–Tits tree dynamical. The p-adic version of empty AdS might correspond to a solution with

uniform edge lengths like the system considered here; thermal or black hole states seem to require topology

change in the interior.

If we believe that the full quantum gravity Hilbert space of the interior involves fluctuating edge

lengths and graph topology, one might ask if tensor network models could be adapted to this picture.

More complicated tensor networks might be used to study objects such as black holes, EPR pairs, and

nongeometric states. The role of planarity of the tensor network may play an important role in this story.

From the point of view of the p-adic conformal field theory, one might ask for more interesting exam-

ples than the free boson. We have already offered some speculations about higher spin fields based on

representation theory of the p-adic conformal group; it would be nice to formulate these models explicitly

and search for interesting gravity duals. Additionally, the models we have studied so far do not appear to

have extended conformal symmetry or a central charge. These important ingredients of 1+1 dimensional

CFT’s might appear with the more careful inclusion of finite extensions of Qp. These finite extensions

might also be linked to the passage to Lorentzian signature.

We finally address future work for the entanglement entropy in a p-adic holographic theory. As already

mentioned, the single and multiple interval entanglement entropies will likely require a detailed replica

computation. This may be possible through a more detailed study of branched covers of the p-adic plane

as Mumford curves. With entanglement entropies in hand, one might ask for new and old proofs of entropy
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inequalities; these are expected to be simplified by the ultrametric nature of the p-adics. Finally, it remains

to be seen how much can be learned about real AdS/CFT from studying these systems adelically over every

prime.

Note added

As this work was being completed, we became aware of [29], which treats similar ideas from a somewhat

different viewpoint, and in which some of our results in §4.1–4.3 were independently obtained.
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Appendices

A p-adic integration

Here we review some aspects of p-adic integration, including basic properties and examples, the Fourier

transform, and the p-adic gamma function Γp. A more comprehensive review is found in [10]. For formal

proofs, as well as extensive integration tables, the reader may consult [55].

As already discussed, the unique additive Haar measure dx on Qp is normalized so that∫
Zp
dx = 1. (A.1)

To find the volume of the set Br, which consists of x ∈ {Qp, |x|p ≤ pr}, we may scale the measure and
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reduce this to the integral above on Zp as:∫
Br
dx = pr

∫
Zp
dx = pr. (A.2)

As r → ∞, the volume diverges as in the real case. Compactifying the point at infinity amounts to

switching from the Haar measure to the Patterson-Sullivan measure dµ0(x); these measures agree on Zp
and differ in the complement by dµ0(x) = dx/|x|2p.

With this measure the volume is computed with a change of variables:∫
Qp
dµ0(x) =

∫
Zp
dx+

∫
Qp−Zp

|x|−2
p dx (A.3)

= 1 +
1

p

∫
Zp
du, u =

1

px
, du =

p dx

|x|2p
(A.4)

=
p+ 1

p
. (A.5)

A large class of elementary integrals may be evaluated using these methods; see the above references for

complete details.

We now turn our attention to the p-adic Fourier transform of a function f(x) : Qp → C. As discussed

in section 4.2.1, this involves integrating the function against the additive character χ(x) = e2πi{kx} over

all Qp. This generates a new complex valued function in terms of the p-adic momentum k ∈ Qp:

f̃(k) =

∫
Qp
χ(kx)f(x)dx, (A.6)

f(x) =

∫
Qp
χ(−kx)f̃(k)dk. (A.7)

The analogy with the real Fourier transform should be clear. In practice evaluating this kind of integral

often requires one to divide Qp into spheres consisting of points with |x|p = pn and performing the integral

on each sphere. This can be seen in the example:

∫
Br
χ(kx)dx =

pr, |k|p ≤ p−r

0, otherwise.
(A.8)

As in the real case, one may find tables with numerous p-adic Fourier transforms of elementary functions

in the literature.

The final integral expression is that of the Gelfand-Graev-Tate Γ function:
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Γp(α) =

∫
Qp
χ(x)|x|α−1

p dx =
1− ps−1

1− p−s
. (A.9)

This function has some similar properties to the ordinary gamma function. It is fairly ubiquitous in certain

p-adic integral calculations, and we refer the reader to literature on p-adic string theory for details.

B p-adic differentiation

As already discussed, complex fields living on the boundary P1(Qp) are maps

f(x) : P1(Qp)→ C. (B.1)

In the archimedean case of 2d conformal field theory, we have f(z, z̄) : P1(C) → C and it makes sense to

define holomorphic and antiholomorphic derivatives ∂f
∂z

and ∂f
∂z̄

. In the p-adic case, analogous differentiation

expressions no longer make sense are we would be dividing a complex number by a p-adic number and

these fields have different topologies.

The only notion of derivative we may use is the Vladimirov derivative [55, 21], and it can be thought of as

a nonlocal pseudo-differential operator. Roughly speaking, this operation is the p-adic analog of Cauchy’s

Differentiation Formula in which the derivative of a function at a point is expressed as a weighted integral

of the function over a curve. It is also know as a normal derivative [58] in the context of the p-adic string

where it is interpreted as the derivative of the embedding coordinates Xµ normal to the boundary of the

worldsheet. Becaues this operator is defined on Qp without any reference to an embedding or worldsheet,

we opt to refer to it as a Vladimirov derivative. The nth Vladimirov derivative is defined by

∂n(p)f(x) =

∫
Qp

f(x′)− f(x)

|x′ − x|n+1
p

dx′. (B.2)

Some authors may choose a different normalization in front of this integral; usually in the form of p-

adic gamma functions. At first sight the expression above may not resemble any familiar notions of

differentiation. We may see this as a good notion for derivative in two ways; in the case of the p-adic string

this expression is the limit of the normal derivative on Tp as we go to the boundary, as shown in [58]. We

may also compute the Vladimirov derivative of some special p-adic functions and compare with the real

case. This is done in the following section.
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B.1 Examples

We wish to first compute the derivative of the additive character, χ(kx). This function is the p-adic analog

of a plane wave with momentum k, so we expect it to be an eigenfunction of the derivative with eigenvalue

related to k.

∂n(p)χ(kx) =

∫
Qp

χ(kx′)− χ(kx)

|x′ − x|n+1
p

dx′. (B.3)

Using the properties of the additive Haar measure of Qp, we can shift the integration measure,

y = k(x′ − x), dy = |k|pdx′ (B.4)

and simplify the integral ∫
Qp

χ(kx′)− χ(kx)

|x′ − x|n+1
p

dx′ (B.5)

= |k|np
∫
Qp

χ(y + kx)− χ(kx)

|y|n+1
p

dy (B.6)

= |k|npχ(kx)

∫
Qp

χ(y)− 1

|y|n+1
p

dy. (B.7)

Where we used the additive property of the character to extract the x dependence. The integral appears

to diverge at y ∼ 0; this divergence is actually canceled by the numerator and can be seen by introducing

an infrared cutoff. Regularization of this integral is discussed in [4] and [26]. The result is∫
Qp

χ(y)− 1

|y|n+1
p

dy =
1− p−n−1

1− pn
= Γp(−n), (B.8)

where we have used the definition of the p-adic gamma function in Eq. (A.9). So the end result is

∂n(p)χ(kx) = Γp(−n)|k|npχ(kx). (B.9)

Up to the factor of the gamma function (which could be absorbed into the normalization of the derivative,)

we see the additive character χ(kx) is an eigenfunction of the Vladimirov derivative with the eigenvalue

given by the p-adic norm of its “momentum.”

Another example we may wish to compute is the nth derivative of |x|sp for some s ∈ C. This may be

most easily be computed by Fourier transform and serves as an example of an alternative representation
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of the Vladimirov derivative:

∂n(p)|x|sp =

∫
χ(−kx)|k|np |̃x|spdk (B.10)

where |̃x|sp is the p-adic Fourier transform of |x|sp, given in [60, 55]:

|̃x|sp =

∫
χ(kx)|x|spdx = Γp(s+ 1)|k|−s−1

p (B.11)

everywhere it is defined. Applying this formula twice to the derivative we wish to compute, we arrive at

∂n(p)|x|sp = Γp(s+ 1)Γp(n− s)|x|s−np , (B.12)

which should resemble the ordinary nth derivative of a polynomial function.
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