2,492 research outputs found

    Built-in reduction of statistical fluctuations of partitioning objects

    Get PDF
    Our theoretical and numerical investigation of the movement of an object that partitions a microtubule filled with small particles indicates that vibrations warranted by thermal equilibrium are reached only after a time that increases exponentially with the number of particles involved. This points to a basic mechanical process capable of breaching, on accessible time scales, the ultimate ergodic constraints that force randomness on bound microscale and nanoscale systems

    Reduced Density-Matrix Functional Theory: correlation and spectroscopy

    Full text link
    In this work we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard molecule at 1/4 and 1/2 filling as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison we also report the results of the GWGW approximation, where the self-energy functional is approximated, but no further hypothesis are made concerning the approximations of the observables. In particular we focus on the atomic limit, where the two sites of the molecule are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard molecule at 1/2 filling with or without a spin-symmetry-broken ground state, allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GWGW the signature of strong correlation are present in the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover we show how the spectroscopic properties change from one spin structure to the other. Our findings can be generalized to other situations, which allows us to make connections to real materials and experiment

    ELECTROCHEMICAL MICROREACTORS FOR THE ABATEMENT OF ORGANIC POLLUTANTS IN WATER SOLUTION

    Get PDF
    Electrochemical methods can offer new sustainable routes for the abatement of organic pollutants resistant to biological processes. These methods use a clean reagent, the electron, and very mild operative conditions (ambient temperature and atmospheric pressure) with limited operative costs. However, electrochemical processes present some important disadvantages when performed in conventional reactors. In particular, to achieve reasonable cell voltages when the medium has not an adequate conductivity, one needs adding to the system a supporting electrolyte. This is certainly a main obstacle for a wide application of electrochemical tools. Indeed, adding chemicals is often a problematic issue, since this may lead to the formation of secondary products, makes more difficult the separation procedures and increases the operative costs. Recently it has been shown that the electrochemical processes can strongly benefit from the utilization of microfluidic electrochemical reactors (i.e. cells with a distance between the cathode and the anode of tens or hundreds of micrometers) allowing to minimize or even remove some of the above mentioned disadvantages. Thus, very small distances between electrodes lead from one side to a drastic reduction of the ohmic resistances, (allowing to operate with lower cell voltages and without supporting electrolyte), and on the other side to intensify the mass transport of the reagents towards electrodes surfaces. The utilization of micro devices may present the drawback of a more easy fouling but also other potential advantages such as an easier scale-up procedure through simple parallelization of many small units. In this work, the possible utilization of various electrochemical oxidation methods for the treatment of aqueous solutions of Acid Orange 7 (AO7) chosen as a model compound (namely, direct electrochemical oxidation, indirect oxidation with active chlorine and electro-Fenton) used alone or in a combined way was studied for the sake of comparison of various electrochemical approaches. The abatement of AO7 was performed successfully in the micro reactors under a single-pass mode without supporting electrolyte at low cell voltages. A very high conversion for passage can be achieved, allowing to operate the process under a continuous mode and to achieve a fast screening of the effect of operative parameters due to very short times of treatment. The utilization of three micro reactors in series open interesting new perspectives, including the opportunity to modulate the current density among the reactors, in order to optimize the figures of merit of the process. The effect of various operating parameters such as the initial concentration of the AO7, the electrode surface, the flow rate and the current density was also investigated in detail
    • …
    corecore