26 research outputs found

    In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses

    Get PDF
    The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    ToksikoloĆĄka svojstva citrinina

    Get PDF
    Citrinin (CTN) is a nephrotoxic mycotoxin produced by several fungal strains belonging to the genera Penicillium, Aspergillus, and Monascus. It contaminates various commodities of plant origin, cereals in particular, and is usually found together with another nephrotoxic mycotoxin, ochratoxin A (OTA). These two mycotoxins are believed to be involved in the aetiology of endemic nephropathy. In addition to nephrotoxicity, CTN is also embryocidal and fetotoxic. The genotoxic properties of CTN have been demonstrated with the micronuleus test (MN), but not with single-cell gel electrophoresis. The mechanism of CTN toxicity is not fully understood, especially not whether CTN toxicity and genotoxicity are the consequence of oxidative stress or of increased permeability of mitochondrial membranes. CTN requires complex cellular biotransformation to exert mutagenicity. Compared with other mycotoxins, CTN contamination of food and feed is rather scarce. However, it is reasonable to believe that humans are much more frequently exposed to CTN than generally accepted, because it is produced by the same moulds as OTA, which is a common contaminant of human food all over the world. At present, there are no specifi c regulations either in Croatia or in the European Union concerning CTN in any kind of commodity.Citrinin (CTN) nefrotoksičan je mikotoksin koji proizvode različiti sojevi plijesni iz rodova Penicillium, Aspergillus i Monascus. CTN se moĆŸe naći u različitim namirnicama biljnog podrijetla, osobito u ĆŸitaricama i obično se nalazi zajedno s drugim nefrotoksičnim mikotoksinom, okratoksinom A (OTA). Pretpostavlja se da je izloĆŸenost ovim mikotoksinima povezana s nastankom endemske nefropatije. Osim ĆĄto je nefrotoksičan, CTN je joĆĄ i embricidan i fetotoksičan. Na genotoksičnost citrinina upućuje pozitivan mikronukleusni test na različitim vrstama staničnih kultura, iako je kometski test negativan. Mutagenost CTN-a očituje se na različitim vrstama stanica samo ako se pridodaju stanični aktivatori kao npr. S9-mix. Mehanizam toksičnosti CTN-a nije potpuno razjaĆĄnjen pa joĆĄ uvijek traje znanstvena rasprava je li njegova toksičnost i genotoksičnost posljedica oksidacijskog stresa ili povećane permeabilnosti mitohondrijskih membrana. U dostupnoj literaturi podaci o kontaminiranosti hrane i krmiva ovim mikotoksinom mnogo su rjeđi od onih za druge mikotoksine. MoĆŸe se pretpostaviti da su ljudi često izloĆŸeni ovom mikotoksinu zato ĆĄto ga proizvode iste plijesni koje proizvode i OTA, a one kontaminiraju hranu po cijelom svijetu. U Hrvatskoj i u zemljama Europske Unije ne postoje zakonske odredbe o dopuĆĄtenim granicama CTN-a u bilo kojoj vrsti hrane

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    (R)‐

    No full text
    corecore