47 research outputs found

    Fluctuating, Lorentz-force-like coupling of Langevin equations and heat flux rectification

    Full text link
    In a description of physical systems with Langevin equations, interacting degrees of freedom are usually coupled through symmetric parameter matrices. This coupling symmetry is a consequence of time-reversal symmetry of the involved conservative forces. If coupling parameters fluctuate randomly, the resulting noise is called multiplicative. For example, mechanical oscillators can be coupled through a fluctuating, symmetric matrix of spring "constants". Such systems exhibit well-studied instabilities. In this note, we study the complementary case of antisymmetric, time-reversal symmetry breaking coupling that can be realized with Lorentz forces or various gyrators. We consider the case that these antisymmetric couplings fluctuate. This type of multiplicative noise does not lead to instabilities in the stationary state but renormalizes the effective non-equilibrium friction. Fluctuating Lorentz-force-like couplings also allow to control and rectify heat transfer. A noteworthy property of this mechanism of producing asymmetric heat flux is that the controlling couplings do not exchange energy with the system.

    Fluctuating, Lorentz-force-like coupling of Langevin equations and heat flux rectification

    Get PDF
    In a description of physical systems with Langevin equations, interacting degrees of freedom are usually coupled through symmetric parameter matrices. This coupling symmetry is a consequence of time-reversal symmetry of the involved conservative forces. If coupling parameters fluctuate randomly, the resulting noise is called multiplicative. For example, mechanical oscillators can be coupled through a fluctuating, symmetric matrix of spring "constants". Such systems exhibit well-studied instabilities. In this note, we study the complementary case of antisymmetric, time-reversal symmetry breaking coupling that can be realized with Lorentz forces or various gyrators. We consider the case that these antisymmetric couplings fluctuate. This type of multiplicative noise does not lead to instabilities in the stationary state but renormalizes the effective non-equilibrium friction. Fluctuating Lorentz-force-like couplings also allow to control and rectify heat transfer. A noteworthy property of this mechanism of producing asymmetric heat flux is that the controlling couplings do not exchange energy with the system.

    Role of the membrane for mechanosensing by tethered channels

    Full text link
    Biologically important membrane channels are gated by force at attached tethers. Here, we generically characterize the non-trivial interplay of force, membrane tension, and channel deformations that can affect gating. A central finding is that minute conical channel deformation under force leads to significant energy release during opening. We also calculate channel-channel interactions and show that they can amplify force sensitivity of tethered channels

    Efficiency of surface-driven motion: nano-swimmers beat micro-swimmers

    Full text link
    Surface interactions provide a class of mechanisms which can be employed for propulsion of micro- and nanometer sized particles. We investigate the related efficiency of externally and self-propelled swimmers. A general scaling relation is derived showing that only swimmers whose size is comparable to, or smaller than, the interaction range can have appreciable efficiency. An upper bound for efficiency at maximum power is 1/2. Numerical calculations for the case of diffusiophoresis are found to be in good agreement with analytical expressions for the efficiency

    Collective force generation by groups of migrating bacteria

    Full text link
    From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching of bacterial groups also produces traction hotspots, however with amplified forces around 100 pN. Although twitching groups migrate slowly as a whole, traction fluctuates rapidly on timescales <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified in groups by a factor of ~5. Since advancing protrusions of gliding cells push on average in the direction of motion, we infer a long-range compressive load sharing among sub-leading cells. Together, these results show that the forces generated during twitching and gliding have complementary characters and both forces are collectively amplified in groups

    Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer

    Full text link
    Active diffusiophoresis - swimming through interaction with a self-generated, neutral, solute gradient - is a paradigm for autonomous motion at the micrometer scale. We study this propulsion mechanism within a linear response theory. Firstly, we consider several aspects relating to the dynamics of the swimming particle. We extend established analytical formulae to describe small swimmers, which interact with their environment on a finite lengthscale. Solute convection is also taken into account. Modeling of the chemical reaction reveals a coupling between the angular distribution of reactivity on the swimmer and the concentration field. This effect, which we term "reaction induced concentration distortion", strongly influences the particle speed. Building on these insights, we employ irreversible, linear thermodynamics to formulate an energy balance. This approach highlights the importance of solute convection for a consistent treatment of the energetics. The efficiency of swimming is calculated numerically and approximated analytically. Finally, we define an efficiency of transport for swimmers which are moving in random directions. It is shown that this efficiency scales as the inverse of the macroscopic distance over which transport is to occur.Comment: 16 pages, 11 figure

    A generic self-stabilization mechanism for biomolecular adhesions under load

    Full text link
    Mechanical loading generally weakens adhesive structures and eventually leads to their rupture. However, biological systems can adapt to loads by strengthening adhesions, which is essential for maintaining the integrity of tissue and whole organisms. Inspired by cellular focal adhesions, we suggest here a generic, molecular mechanism that allows adhesion systems to harness applied loads for self-stabilization under non-equilibrium conditions -- without any active feedback involved. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some stretched conformation states out of equilibrium, which, for thermodynamic reasons, leads to association of further molecules with the adhesion cluster. Self-stabilization robustly increases adhesion lifetimes in broad parameter ranges. Unlike for catch-bonds, bond dissociation rates do not decrease with force. The self-stabilization principle can be realized in many ways in complex adhesion-state networks; we show how it naturally occurs in cellular adhesions involving the adaptor proteins talin and vinculin.Comment: 7 pages, 4 figures and SI with 11 pages, 8 figure

    Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells

    Full text link
    Adherent cells exert traction forces on to their environment, which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures. This traction can be measured in a perturbation-free manner with traction force microscopy (TFM). In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular traction forces
    corecore