30 research outputs found

    A phase 1a/1b trial of CSF-1R inhibitor LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors

    Get PDF
    Background LY3022855 is a recombinant, immunoglobulin, human monoclonal antibody targeting the colony-stimulating factor-1 receptor. This phase 1 trial determined the safety, pharmacokinetics, and antitumor activity of LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid cancers who had received standard anti-cancer treatments. Methods In Part A (dose-escalation), patients received intravenous (IV) LY3022855 25/50/75/100 mg once weekly (QW) combined with durvalumab 750 mg once every two weeks (Q2W) IV or LY3022855 50 or 100 mg QW IV with tremelimumab 75/225/750 mg once every four weeks. In Part B (dose-expansion), patients with non-small cell lung cancer (NSCLC) or ovarian cancer (OC) received recommended phase 2 dose (RP2D) of LY3022855 from Part A and durvalumab 750 mg Q2W. Results Seventy-two patients were enrolled (median age 61 years): PartA = 33, Part B = 39. In Part A, maximum tolerated dose was not reached, and LY3022855 100 mg QW and durvalumab 750 mg Q2W was the RP2D. Four dose-limiting equivalent toxicities occurred in two patients from OC cohort. In Part A, maximum concentration, area under the concentration-time curve, and serum concentration showed dose-dependent increase over two cycles of therapy. Overall rates of complete response, partial response, and disease control were 1.4%, 2.8%, and 33.3%. Treatment-emergent anti-drug antibodies were observed in 21.2% of patients. Conclusions LY3022855 combined with durvalumab or tremelimumab in patients with advanced NSCLC or OC had limited clinical activity, was well tolerated. The RP2D was LY3022855 100 mg QW with durvalumab 750 mg Q2W

    Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer

    Get PDF
    Treatment with programmed cell death-1 or programmed death ligand 1 (PD-(L)1) inhibitors is now standard therapy for patients with lung cancer. The immunosuppressive effect of corticosteroids may reduce efficacy of PD-(L)1 blockade. On-treatment corticosteroids for treatment of immune-related adverse events do not seem to affect efficacy, but the potential impact of baseline corticosteroids at the time of treatment initiation is unknown. Clinical trials typically excluded patients who received baseline corticosteroids, which led us to use real-world data to examine the effect of corticosteroids at treatment initiation. We identified patients who were PD-(L)1-naïve with advanced non-small-cell lung cancer from two institutions-Memorial Sloan Kettering Cancer Center and Gustave Roussy Cancer Center-who were treated with single-agent PD-(L)1 blockade. Clinical and pharmacy records were reviewed to identify corticosteroid use at the time of beginning anti-PD-(L)1 therapy. We performed multivariable analyses using Cox proportional hazards regression model and logistic regression. Ninety (14%) of 640 patients treated with single-agent PD-(L)1 blockade received corticosteroids of ≥ 10 mg of prednisone equivalent daily at the start of the PD-(L)1 blockade. Common indications for corticosteroids were dyspnea (33%), fatigue (21%), and brain metastases (19%). In both independent cohorts, Memorial Sloan Kettering Cancer Center (n = 455) and Gustave Roussy Cancer Center (n = 185), baseline corticosteroids were associated with decreased overall response rate, progression-free survival, and overall survival with PD-(L)1 blockade. In a multivariable analysis of the pooled population, adjusting for smoking history, performance status, and history of brain metastases, baseline corticosteroids remained significantly associated with decreased progression-free survival (hazard ratio, 1.3; P = .03), and overall survival (hazard ratio, 1.7; P Baseline corticosteroid use of ≥ 10 mg of prednisone equivalent was associated with poorer outcome in patients with non-small-cell lung cancer who were treated with PD-(L)1 blockade. Prudent use of corticosteroids at the time of initiating PD-(L)1 blockade is recommended

    Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes

    Get PDF
    PURPOSE: Invasive mucinous adenocarcinoma (IMA) is a unique subtype of lung adenocarcinoma, characterized genomically by frequent KRAS mutations or specific gene fusions, most commonly involving NRG1. Comprehensive analysis of a large series of IMAs using broad DNA- and RNA-sequencing methods is still lacking, and it remains unclear whether molecular subtypes of IMA differ clinicopathologically. EXPERIMENTAL DESIGN: A total of 200 IMAs were analyzed by 410-gene DNA next-generation sequencing (MSK-IMPACT; n = 136) or hotspot 8-oncogene genotyping (n = 64). Driver-negative cases were further analyzed by 62-gene RNA sequencing (MSK-Fusion) and those lacking fusions were further tested by whole-exome sequencing and whole-transcriptome sequencing (WTS). RESULTS: Combined MSK-IMPACT and MSK-Fusion testing identified mutually exclusive driver alterations in 96% of IMAs, including KRAS mutations (76%), NRG1 fusions (7%), ERBB2 alterations (6%), and other less common events. In addition, WTS identified a novel NRG2 fusion (F11R-NRG2). Overall, targetable gene fusions were identified in 51% of KRAS wild-type IMAs, leading to durable responses to targeted therapy in some patients. Compared with KRAS-mutant IMAs, NRG1-rearranged tumors exhibited several more aggressive characteristics, including worse recurrence-free survival (P \u3c 0.0001). CONCLUSIONS: This is the largest molecular study of IMAs to date, where we demonstrate the presence of a major oncogenic driver in nearly all cases. This study is the first to document more aggressive characteristics of NRG1-rearranged IMAs, ERBB2 as the third most common alteration, and a novel NRG2 fusion in these tumors. Comprehensive molecular testing of KRAS wild-type IMAs that includes fusion testing is essential, given the high prevalence of alterations with established and investigational targeted therapies in this subset

    Fibronectin Matrix Assembly Suppresses Dispersal of Glioblastoma Cells

    Get PDF
    Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12–15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5β1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal

    Next-generation sequencing based detection of germline and somatic alterations in a patient with four metachronous primary tumors

    No full text
    Introduction: Multiple primary tumors (MPTs) are defined as two or more separate synchronous or metachronous neoplasms occurring in different sites in the same individual. These tumors differ in histology, as well as primary sites from which they arise. Risk factors associated with the occurrence of MPTs include germline alterations, exposure to prior cancer therapies, occupational hazards, and lifestyle and behavioral influences. Case report: We present a case of a patient who was diagnosed with four metachronous primary tumors. In 2013, she was diagnosed with serous proliferations associated with psammomatous bodies of primary peritoneal origin (pT3NxM0). This was followed by invasive ductal carcinoma of the breast (stage pT2N0Mx, histological grade III/III) in 2014, melanoma (stage pT2bNxMx) in 2016 that further advanced to the lung and brain in 2017, and a low-grade lung carcinoid in 2017. To better understand the biology of this patient's MPTs, we performed next-generation sequencing (NGS) to assess for both somatic and germline alterations. The treatment course for this patient aims to target the tumor with the strongest prognostic value, namely her malignant melanoma, and has contributed favorably to the overall survival of this patient. Conclusion: We report the clinical and genomic landscape of a patient with MPTs who had no identifiable unique somatic or germline mutations to explain her predilection to cancer. The treatment course and overall prognosis for this patient is important for understanding future cases with unrelated, metachronous MPTs, the occurrence of which cannot always be explained by underlying genetic mechanisms. Keywords: Multiple primary tumors, Next-generation sequencing, Tumor mutational burden, Immunotherap
    corecore