16 research outputs found
Femtosecond Thermal and Nonthermal Hot Electron Tunneling Inside a Photoexcited Tunnel Junction
Efficient operation of electronic nanodevices at ultrafast speeds requires understanding and control of the currents generated by femtosecond bursts of light. Ultrafast laser-induced currents in metallic nanojunctions can originate from photo-assisted hot electron tunneling or lightwave-induced tunneling. Both processes can drive localized photocurrents inside a scanning tunneling microscope (STM) on femto- to attosecond time scales, enabling ultrafast STM with atomic spatial resolution. Femtosecond laser excitation of a metallic nanojunction, however, also leads to the formation of a transient thermalized electron distribution, but the tunneling of thermalized hot electrons on time scales faster than electron-lattice equilibration is not well understood. Here, we investigate ultrafast electronic heating and transient thermionic tunneling inside a metallic photoexcited tunnel junction and its role in the generation of ultrafast photocurrents in STM. Phase-resolved sampling of broadband THz pulses via the THz-field-induced modulation of ultrafast photocurrents allows us to probe the electronic temperature evolution inside the STM tip, and to observe the competition between instantaneous and delayed tunneling due to nonthermal and thermal hot electron distributions in real time. Our results reveal the pronounced nonthermal character of photo-induced hot electron tunneling, and provide a detailed microscopic understanding of hot electron dynamics inside a laser-excited tunnel junction
Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
Structured additive regression provides a general framework for complex
Gaussian and non-Gaussian regression models, with predictors comprising
arbitrary combinations of nonlinear functions and surfaces, spatial effects,
varying coefficients, random effects and further regression terms. The large
flexibility of structured additive regression makes function selection a
challenging and important task, aiming at (1) selecting the relevant
covariates, (2) choosing an appropriate and parsimonious representation of the
impact of covariates on the predictor and (3) determining the required
interactions. We propose a spike-and-slab prior structure for function
selection that allows to include or exclude single coefficients as well as
blocks of coefficients representing specific model terms. A novel
multiplicative parameter expansion is required to obtain good mixing and
convergence properties in a Markov chain Monte Carlo simulation approach and is
shown to induce desirable shrinkage properties. In simulation studies and with
(real) benchmark classification data, we investigate sensitivity to
hyperparameter settings and compare performance to competitors. The flexibility
and applicability of our approach are demonstrated in an additive piecewise
exponential model with time-varying effects for right-censored survival times
of intensive care patients with sepsis. Geoadditive and additive mixed logit
model applications are discussed in an extensive appendix
Beam Modulation for Aberration Control and Signal Enhancement in Tip-Enhanced Raman Spectroscopy
Tip-enhanced Raman spectroscopy (TERS) provides the sensitivity required to obtain the vibrational fingerprint of few molecules. While single molecule detection has been demonstrated in UHV experiments, the sensitivity of the technique in ambient, liquid and electrochemical conditions is still limited. In this work, we present a new strategy to increase the signal-to-noise in TERS by spatial light modulation. We iteratively optimize the phase of the excitation beam employing two different feedback mechanisms. In one optimization protocol, we monitor the spectral changes upon aberration correction and tight far-field focusing. In a second protocol, we use a phase-optimization strategy where TER spectra are directly used for feedback. Far-field tight focusing results in average signal enhancements of a factor of 3.5 in air and has no impact on TER signals obtained from solid/liquid interfaces. Using the TER spectrum as direct feedback, we obtain average signal enhancements between a factor of 2.6 in liquid and 4.3 in air. In individual cases, some bands increase by more than one order of magnitude in intensity upon spatial light modulation. Importantly, phase modulation in addition allowed the retrieval of bands that were initially not discernible from the noise. The proposed beam-modulation strategy can be easily implemented in existing TERS instruments and can help to push the detection limit of the technique in applications where the signal-to-noise level is low
Quantitative sampling of femtosecond THz voltage pulses and hot electron dynamics in an STM junction
We demonstrate phase-resolved detection of femtosecond voltage transients in a scanning tunneling microscope induced by ultrabroadband THz pulses from a spintronic emitter, and probe hot electron dynamics inside the photoexcited junction on the nano-femtoscale