40 research outputs found

    Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    Get PDF
    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols

    Microplate assay for boron analysis in soil and plant tissue

    No full text
    The boron concentration in soil extracts and ashed plant tissue was quantified with a rapid and reproducible microplate assay. The microsized Azomethine-H method required adjustment to reduce pH and chemical interferences in soil and plant tissue samples. Microplate spectrophotometry permits replication, quality control and is suitable for high throughput analysis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: Implication of organic acids in these processes

    Get PDF
    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. © 2015 Mnasri,Ghabriche,Fourati,Zaier,Sabally,Barrington,Lutts, AbdellyandGhnaya

    HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women.

    No full text
    A crucial requirement in the rational design of a prophylactic vaccine against the human immunodeficiency virus (HIV) is to establish whether or not protective immunity can occur following natural infection. The immune response to HIV infection is characterized by very vigorous HIV-specific cytotoxic T-lymphocyte (CTL) activity. We have identified four HIV-1 and HIV-2 cross-reactive peptide epitopes, presented to CTL from HIV-infected Gambians by HLA-B35 (the most common Gambian class I HLA molecule). These peptides were used to elicit HIV-specific CTLs from three out of six repeatedly exposed but HIV-seronegative female prostitutes with HLA-B35. These women remain seronegative with no evidence of HIV infection by polymerase chain reaction or viral culture. Their CTL activity may represent protective immunity against HIV infection
    corecore