60 research outputs found

    A review on potentiality of nano filler/natural fiber filled polymer hybrid composites

    Get PDF
    The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment

    A review on nano fibre technology in polymer composites

    Get PDF
    The enormous attention and interest by both academics and industrial field for greener, biodegradable and renewable materials implicate a persuasive trends towards the encroachment of nano-materials science and technology in the polymer composite field. Nanocomposites creates high impacts on the development of nano materials with advanced features to solve potential risks with their wider industrial applications. Nano fibres are highly engineered fibres with diameters less than 100 nm that offer several advantages over conventional fibres. One dimensional (1D) nanostructure fillers such as carbon nanofibre and cellulose nanofibre are the most common, promising and unique for developing multifunctional nanocomposites with better properties and extensive applications compared to micro size fibres. Nano fibre technology brings revolution by providing products that are completely safe, truly greener, reliable and environmentally friendly for industries, researchers and users. This review article is intended to present valuable literature data on research and trend in the fields of carbon and cellulose nano fiber, nanocomposites with specific focus on various applications for a sustainable and greener environment

    Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites

    Get PDF
    This study deals with the analysis of dynamic mechanical, thermal and flammability properties of treated and untreated pineapple leaf fiber (PALF) and kenaf fiber (KF) phenolic composites. Results indicated that storage modulus was decreased for all composites with increases in temperature and pattern of slopes for all composites, having almost the same values of E' at glass transition temperature (Tg). The peak of the loss modulus of pure phenolic composites was shown to be much less. After the addition of kenaf/PALF, peaks were higher and shifted towards a high temperature. The Tan delta peak height was low for pure phenolic composites and maximum for 60% PALF phenolic composites. Cole-Cole analysis was carried out to understand the phase behavior of the composite samples. Thermogravimetric analysis (TGA) results indicated that pure phenolic composites have better thermal stability than PALF and kenaf phenolic composites. Vertical and horizontal UL-94 tests were conducted and showed pure phenolic resin is highly fire resistant. The overall results showed that treated KF composites enhanced the dynamic mechanical and thermal properties among all PALF/KF composites

    Fabrication of epoxy nanocomposites from oil palm nano filler: mechanical and morphological properties

    Get PDF
    The aim of this research was to fabricate epoxy nanocomposites by utilizing the developed nano filler from oil palm mills agricultural wastes oil palm empty fruit bunch (OPEFB) fibers for advanced applications. Epoxy-based polymer nanocomposites were prepared by dispersing 1, 3, and 5 wt. % nano OPEFB filler by using a high speed mechanical stirrer through hand lay-up technique. The mechanical (tensile and impact) properties and morphological properties of nano OPEFB/epoxy nanocomposites were examined and compared. Morphological properties were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to look at the dispersion of the nano OPEFB filler in the epoxy matrix. The tensile and impact properties of nanocomposites increased until 3% nano filler loading, but beyond 3% they decreased. Overall mechanical properties reached maximum values for 3% loading, due to better stress transfer owing to homogenous dispersion of nano OPEFB filler within epoxy matrix. The observed results were also confirmed by SEM and TEM micrographs

    Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Get PDF
    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side

    Thermal and flame retardancy behavior of oil palm based epoxy nanocomposites

    Get PDF
    The aim of present study was to investigate the thermal properties and flame retardancy behavior of flame retardant (FR) epoxy nanocomposites from chemically treated (bromine water and tin chloride) oil palm empty fruit bunch (OPEFB) nano filler at different filler loading (1, 3, 5%). Thermal properties were evaluated through thermogravimetry analyzer, derivative thermogravimetry and differential scanning calorimetry. FR properties of nanocomposites are evaluated through UL-94 vertical burning test and limiting oxygen index (LOI). The functional group analysis of all composites was made by FTIR spectroscopy. Thermal analysis shows that degradation temperature of epoxy composites shifts from 370 to 410 °C and char yield also increases for 3% loading. Furthermore LOI value of 29% and UL-94 rating of V-0 with no flame dripping and cotton ignition, revealed that 3% oil palm nano filler filled epoxy nanocomposites display satisfactory flame retardancy. The superior flame retardancy of epoxy nanocomposites are attributed to the chemical reactions occurred in the gaseous phases and the profound synergistic flame retardation effect of tin with bromine in the treated nano OPEFB filler. All the epoxy nanocomposites displayed almost similar FTIR spectra with the characteristics metal-halogen bond supporting the synergism. Homogeneous dispersion of 3% oil palm nano filler act as highly effective combustion chain terminating agent compared with 1 and 5% nano OPEFB/epoxy nanocomposites

    Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications

    Get PDF
    The versatile characteristic of epoxy and its diversity made it suitable for different industrial applications such as laminated circuit board, electronic component encapsulations, surface coatings, potting, fiber reinforcement, and adhesives. However, the pervasive applications in many high-performance field limited the epoxy use because of their delamination, low impact resistance, inherent brittleness, and fracture toughness behavior. The limitations of epoxy can be overcome by incorporation and modification before their industrial applications. Currently, modified epoxy resins are extensively used in fabrication of natural fiber-reinforced composites and in making its different industrial products because of their superior mechanical, thermal, and electrical properties. Present review article designed to be a comprehensive source of recent literature on epoxy structure, synthesis, modified epoxy, bio-epoxy resin, and its applications. This review article also aims to cover the recent advances in natural fiber-based epoxy composites and nanocomposites research study, including manufacturing techniques and their different industrial applications

    Manufacturing of coir fibre-reinforced polymer composites by hot compression technique

    Get PDF
    This present chapter describes the manufacturing technique and properties of coir fibre-reinforced polypropylene composites manufactured using a hot press machine. The effects of basic chromium sulphate and sodium bicarbonate treatment on the physical and mechanical properties were also evaluated. Chemical treatment and fibre loading generally improved the mechanical properties. Five-hour basic chromium sulphate and sodium bicarbonate-treated coir-polypropylene had the best set of properties among all manufactured composites. Chemical treatment also improved water absorption characteristics. This proves that chemical treatment reduced the hydrophilicity of the coir fibre. Overall the hot compression technique was proved to be successful in manufacturing good quality coir reinforced polypropylene composites

    Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties

    Get PDF
    The present article deals with the fabrication of magnesium hydroxide (MH) filler reinforced kenaf/epoxy hybrid composites with different loading (10%, 15%, 20% and 25% by wt). Tensile, impact, flexural, morphological, thermal stability and dynamic mechanical properties of the developed MH/kenaf/epoxy hybrid composites were evaluated and compared. The analysis of the results revealed that the incorporation of the stiff MH particles into the kenaf/epoxy composites enhanced their tensile, flexural and impact properties, as well as their residual content. Enhancement in both storage (E′) and loss (E″) moduli, as well as a considerable decrease in damping factor (Tan δ), was observed in the hybrid composites, compared to the kenaf/epoxy composites. Moreover, a remarkable improvement in properties was noticed for the 20% MH hybrid composites, which was ascribed to better dispersion and interfacial interaction between the kenaf fibers and the epoxy within composites, enabling more efficient interfacial stress transfer. Overall, the 20% MH/kenaf/epoxy hybrid composites presented better mechanical strength, thermal stability and dynamic properties compared to the rest of the hybrid composites developed in this study

    Preparation and characterization of fire retardant nano-filler from oil palm empty fruit bunch fibers

    Get PDF
    The possibilities of utilizing an abundantly available agricultural waste, oil palm empty fruit bunch (OPEFB) fibers, for the development of nano-filler was investigated. The aim was to develop fire retardant nano-fillers from OPEFB fiber through grinding, chemical treatment (bromine water and SnCl2), and cryogenic crushing, followed by a high energy ball milling process. The structural, morphological, and thermal properties of nano-fillers were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The analysis revealed that the particle size distribution was reduced from micro to nano size in the range of around 14 to 100 nm. Scanning electron microscopy (SEM) observations revealed that the nanoparticles of OPEFB had irregular shapes. The elemental composition of the OPEFB were investigated by elemental dispersive X- ray analysis (EDX), showing the presence of tin, carbon, oxygen, chlorine, and bromine elements both before and after ball milling. Further, thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated that the developed nanofillers exhibited enhanced thermal properties compared to the untreated fibers. Such results suggest that the developed nano-filler can be used for the fabrication of nanocomposites with improved fire retardancy
    corecore