43 research outputs found
The three different phases in the dynamics of chemical reaction networks and their relationship to cancer
We investigate the catalytic reactions model used in cell modeling. The
reaction kinetic is defined through the energies of different species of
molecules following random independent distribution. The related statistical
physics model has three phases and these three phases emerged in the dynamics:
fast dynamics phase, slow dynamic phase and ultra-slow dynamic phase. The
phenomenon we found is a rather general, does not depend on the details of the
model. We assume as a hypothesis that the transition between these phases
(glassiness degrees) is related to cancer. The imbalance in the rate of
processes between key aspects of the cell (gene regulation, protein-protein
interaction, metabolical networks) creates a change in the fine tuning between
these key aspects, affects the logics of the cell and initiates cancer. It is
probable that cancer is a change of phase resulting from increased and
deregulated metabolic reactions.Comment: 5 pages, 2 figures, EPL, in pres
Exact probability distribution functions for Parrondo's games
We consider discrete time Brownian ratchet models: Parrondo's games. Using
the Fourier transform, we calculate the exact probability distribution
functions for both the capital dependent and history dependent Parrondo's
games. We find that in some cases there are oscillations near the maximum of
the probability distribution, and after many rounds there are two limiting
distributions, for the odd and even total number of rounds of gambling. We
assume that the solution of the aforementioned models can be applied to
portfolio optimization.Comment: 5 pages, 3 figure