1 research outputs found
Post-Assembly Functionalization of Supramolecular Nanostructures with Bioactive Peptides and Fluorescent Proteins by Native Chemical Ligation
Post-assembly
functionalization of supramolecular nanostructures
has the potential to expand the range of their applications. We report
here the use of the chemoselective native chemical ligation (NCL)
reaction to functionalize self-assembled peptide amphiphile (PA) nanofibers.
This strategy can be used to incorporate specific bioactivity on the
nanofibers, and as a model, we demonstrate functionalization with
the RGDS peptide following self-assembly. Incorporation of bioactivity
is verified by the observation of characteristic changes in fibroblast
morphology following NCL-mediated attachment of the signal to PA nanofibers.
The NCL reaction does not alter the PA nanofiber morphology, and biotinylated
RGDS peptide was found to be accessible on the nanofiber surface after
ligation for binding with streptavidin-conjugated gold nanoparticles.
In order to show that this strategy is not limited to short peptides,
we utilized NCL to conjugate yellow fluorescent protein and/or cyan
fluorescent protein to self-assembled PA nanofibers. Förster
resonance energy transfer and fluorescence anisotropy measurements
are consistent with the immobilization of the protein on the PA nanofibers.
The change in electrophoretic mobility of the protein upon conjugation
with PA molecules confirmed the formation of a covalent linkage. NCL-mediated
attachment of bioactive peptides and proteins to self-assembled PA
nanofibers allows the independent control of self-assembly and bioactivity
while retaining the biodegradable peptide structure of the PA molecule
and thus can be useful in tailoring design of biomaterials