1,337 research outputs found

    Design and verification of a 24 kA calibration head for a DCCT test facility

    Get PDF
    The Large Hadron Collider (LHC) is CERN's next particle accelerator project, scheduled for commissioning in 2005. The project requires accurate current measurements above 10 kA. Calibration heads have been developed in collaboration with industry to work up to 24 kA at sub-ppm accuracy. The paper describes the design and verification

    Avian Community Changes in Relationto Different Forest Fire Conditions in Central Idaho

    Get PDF
    Wildfire is an important driver of forest bird communities in western North America. To fully understand wildfire effects, more studies comparing species-specific responses across space, time, and a range of burn severities are needed. We analyzed point count data (n = 809 point × year survey occasions; 2002–2010) from central Idaho to examine forest bird community responses to fire. Using community occupancy models, we analyzed changes in point occupancy before and after prescribed burning and wildfire, and along a post-wildfire burn-severity gradient. Occupancy patterns were largely consistent with those expected from species life histories. Cavity nesters and aerial insectivores (mountain bluebird [Sialia currucoides; n = 37 survey occasions detected], house wren [Troglodytes aedon; n = 15], Olive-sided Flycatcher [Contopus cooperi; n = 15]) responded positively to fire consistent with increases in nesting substrate and foraging opportunities expected for these species. Shrub-nesting species (lazuli bunting [Passerina amoena; n = 75], Black-headed Grosbeak [Pheucticus melanocephalus; n = 29]) exhibited lagged positive responses with the expected lag in shrub development after wildfire. In contrast, canopy-nesting foliage gleaners and pine-seed consumers (Clark’s nutcracker [Nucifraga Columbiana; n = 50], Townsend’s warbler [Setophaga townsendi; n = 133]) responded negatively to wildfire. More species responded positively than negatively to fire, and responses to high-severity wildfire were stronger than to prescribed burning. Consequently, species richness increased by approximately 3 species from low- to high-severity burned points and pre- to post-wildfire years. Our results suggest high-severity wildfires generate important habitat for many species, contributing positively to avian diversity

    A GIS Tool for Applying Habitat Suitability Models to Inform Management (Poster)

    Get PDF
    Habitat suitability models are used to guide habitat management for species of conservation concern. Models quantify relationships between known species locations and environmental attributes, which are used to identify and map areas most likely to support species of concern. Managers can then restrict human activities with negative impacts on habitat suitability in these areas. Application of habitat suitability models, however, typically requires technical expertise not available to most land managers. We developed a prototype GIS tool that facilitates application of habitat suitability models to guide management of habitat for woodpecker species of conservation concern. The tool operates within an ArcGIS environment, which is readily available to most managers, and will be capable of generating habitat suitability maps for several species of concern (i.e., Black-backed Woodpecker [Picoides arcticus], Three-toed Woodpecker [P. dorsalis], Lewis’s Woodpecker [Melanerpes lewis], and White-headed Woodpeckers [P. albolvartus]). The tool also automates much of the model application process, reducing requisite technical expertise, and making habitat suitability models widely available. The tool will be accompanied by a manual describing implementation and interpretation of resulting habitat suitability maps. The tool will be especially helpful for informing management of post-disturbance forests (i.e. after wildfire and beetle infestations) to identify suitable habitat for disturbance specialists (e.g., Black-backed, Three-toed, and Lewis’s Woodpeckers).  Identification of suitable habitat is necessary to effectively develop management plans that incorporate the needs of habitat specialists in post-disturbance landscapes. Our prototype is currently being tested by U.S. Forest Service biologists

    Landscape Heterogeneity at White-Headed Woodpecker Nest Sites in West-Central Idaho

    Get PDF
    The white-headed woodpecker (Picoides albolarvatus) is a regional endemic species of dry conifer forests in the Inland Pacific Northwest, where forest restoration activities are increasingly common. Recent efforts to mitigate severe fire effects and restore ecological function in these forests have prompted land managers to consider the implications of forest management actions on a range of resources, including wildlife. Identifying the associations of sensitive wildlife species with the structure and distribution of resources across landscapes is necessary for scientifically-sound management decisions. We examined the heterogeneity and proportion of open- and closed- canopy forest patches surrounding white-headed woodpecker nest sites during 2012 and 2013. We used logistic regression to compare differences between nest (n = 34) and non-nest (n = 184) sites. We found a stronger positive relationship with low canopy closure within 1-ha of nest sites compared with non-nest sites (nests: x? = 0.49, SD = 0.43; non-nests: x? = 0.06, SD = 0.16; P < 0.001). We also measured a stronger positive relationship with the edge density between low and moderate canopy patches within a 1-km radius of nest sites compared with non-nest sites (nests: x? = 30.0 meters/ha, SD = 14.6; non-nests: x? = 18.4 m/ha, SD = 14.9; P < 0.001). Our results are consistent with studies of nesting white-headed woodpeckers in Oregon. These data will help further validate and refine habitat suitability models across their northern range and contribute towards effective management decisions that will benefit the white-headed woodpecker

    Home-Range Size of White-Headed Woodpeckers in W est- Central Idaho

    Get PDF
    The white-headed woodpecker (Picoides albolarvatus) is a species of management concern in dry-conifer forests of the Inland Northwest, where forest restoration and fuels reduction treatments are increasingly common.  This species may be vulnerable to forest management treatments because it occupies a limited distribution and has narrow habitat requirements.  Forest treatments could negatively affect this species if foraging and nesting resources are removed or could benefit the species through creation of more heterogeneity across the landscape.  Studies of other woodpecker species have identified resource availability and habitat composition as a key influence on the variation of home range size within a population.  We examined home range size of white-headed woodpeckers in a landscape historically managed for timber harvest and is currently receiving extensive forest restoration treatments.  In our first field season, we obtained relocations on 7 radio-tagged woodpeckers (5 males and 2 females, all from different breeding pairs), from late nesting through fledgling periods (late June to early September).  We obtained direct foraging observations at the radio locations.  Estimated home range sizes were quite variable(24 - 180 ha), based on the minimum convex polygon (MCP) method.  We will also estimate home range sizes using the fixed-kernel method.  Identifying habitat spatial attributes that account for variation in home range size will contribute towards effective management decisions for the persistence of white-headed woodpecker populations

    Ensemble Habitat Suitability Modeling to Guide Conservation of Black-Backed Woodpeckers

    Get PDF
    Conservation of black-backed woodpecker (Picoides arcticus), a burned-forest specialist, is challenged by the unpredictable availability of suitable habitat. Habitat models calibrated with data from previous wildfires can be used to predict habitat suitability in newly fire-affected areas. Predictive accuracy of habitat models depends on how well statistical relationships reflect actual ecological relationships. We predicted habitat suitability for Black-backed Woodpecker at Montana post-wildfire forests (? 6 years postfire) east of the continental divide using models calibrated with nest location data from wildlfire locations in Idaho, Oregon, and Washington. We developed 6 habitat models, including one partitioned Mahalanobis model, two Maxent models, and 3 weighted logistic regression models with combinations of seven environmental variables describing burn severity, topography, and pre-fire canopy cover. We converted continuous habitat suitability indices (HSIs) into binary predictions (suitable or unsuitable) and combined predictions using and ensemble approach; we compiled the number of models (0–6) predicting locations (30×30-m pixels) as suitable. Habitat models represented different hypotheses regarding true ecological relationships, making inferences from ensemble predictions robust to uncertainties in the form of these relationships. Thirty-five percent of the area burned by eastside Montana wildfires was predicted suitable by either all seven habitat models or none of them (i.e. complete agreement among models). We recommend conservation of areas (e.g., exclusion of post-fire salvage logging) that were consistently predicted suitable by most models, e.g., 32 percent of burned areas predicted suitable by ? 5 models. Additionally, we recommend surveying areas where models disagree to help validate and refine models

    Evaluation de la tolérance à la salinité du rosier planté en hors sol

    Get PDF

    Suivi de la qualité bactériologique des eaux de surface (rivière Nahr Ibrahim, Liban)

    Get PDF
    Le bassin versant du Narh Ibrahim est classé parmi les sites du patrimoine mondial. Les rejets sauvages solides et liquides ont un impact important sur le développement d’une contamination bactériologique tout au long de la rivière. Dans cette étude, des paramètres physico-chimiques et bactériologiques ont été suivis sur neuf sites de prélèvement qui couvrent la rivière Nahr Ibrahim de son amont jusqu’à son estuaire. L’ensemble des paramètres est étudié pendant des périodes de l’année caractérisées par un temps sec ou un temps de crue. Au cours de ces périodes, ces paramètres ont révélé une influence importante du type d’occupation des sols et des phénomènes de lessivage sur la composition bactériologique de la rivière. L’origine et le degré de la contamination bactérienne instantanée ont été également identifiés. Une approche statistique multivariée a montré que l’effet de la localisation du site masque l’effet date sur un même site et pendant la même période. Les sites en aval de la rivière sont caractérisés par une pollution en nitrate et une contamination bactériologique alors que les sites en amont sont marqués par une contamination bactériologique seulement.The Nahr Ibrahim catchment area is classified as an international heritage site. Along the Nahr Ibrahim River, solid and liquid effluents have an important impact on bacterial contamination. Physico-chemical and bacteriological parameters were studied at nine sampling sites located along the Nahr Ibrahim River from its source to its estuary. Total bacteria, total coliforms, fecal coliforms and fecal streptococci were studied during dry and wet weather periods. During these periods, the studied parameters revealed an important influence of the type of soil and leaching on the bacteriological composition of the river. Furthermore, the origin and the degree of temporary bacteriological contamination were identified. A multivariate statistical approach demonstrated that the effect of site location masked the effect of sampling date on the degree of bacteriological contamination. Downstream river sites were characterized by nitrate and bacterial pollution whereas upstream sites showed only by bacterial contamination
    • …
    corecore