49 research outputs found

    Krill as a central node for iron cycling in the Southern Ocean

    Get PDF
    In order to establish the potential role of Antarctic krill (Euphausia superba) in the recycling of bioactive elements, we have quantified the release of iron, phosphate, and ammonia by these organisms along the Antarctic Peninsula sector of the Southern Ocean. The experimental results suggested that the presence of krill has a significant impact on ambient iron concentrations, as large amounts of this trace element were released by the krill (22-689 nmol Fe g Dry Weight-1 h-1, equivalent to 0.2 to 4.3 nmol Fe L-1 d-1). Half of this iron release occurred within the first hour of the experiment, and differences in iron and phosphate release rates (3.1 to 14.0 ÎĽmol PO4 3- g DW-1 h-1) seemed to reflect differences in food availability. These results identify krill as a major node in iron cycling in the Southern Ocean, potentially influencing iron residence time in the upper water column of this region. Copyright 2007 by the American Geophysical Union.Peer Reviewe

    Microbial rhodopsins are major contributors to the solar energy captured in the sea

    Get PDF
    All known phototrophic metabolisms on Earth rely on one of three categories of energy-converting pigments: chlorophyll-a (rarely -d), bacteriochlorophyll-a (rarely -b), and retinal, which is the chromophore in rhodopsins. While the significance of chlorophylls in solar energy capture has been studied for decades, the contribution of retinal-based phototrophy to this process remains largely unexplored. We report the first vertical distributions of the three energy-converting pigments measured along a contrasting nutrient gradient through the Mediterranean Sea and the Atlantic Ocean. The highest rhodopsin concentrations were observed above the deep chlorophyll-a maxima, and their geographical distribution tended to be inversely related to that of chlorophyll-a. We further show that proton-pumping proteorhodopsins potentially absorb as much light energy as chlorophyll-a–based phototrophy and that this energy is sufficient to sustain bacterial basal metabolism. This suggests that proteorhodopsins are a major energy-transducing mechanism to harvest solar energy in the surface ocean

    Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    Get PDF
    Pinedo-González, Paulina ... et. al.-- 19 pages, 10 figures, 2 tables, supporting information http://dx.doi.org/10.1002/2015GB005149The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functionsThis research was partially supported by U.S. National Science Foundation (OCE 1435666), the USC Graduate School Dissertation Completion Fellowship, the Spanish Ministry of Economy and Competitiveness through the Malaspina 2010 expedition project (Consolider-Ingenio 2010, CSD2008-00077) and the project CTM2014-59244-C3-3-RPeer Reviewe
    corecore