11 research outputs found

    Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy?

    Get PDF
    Accumulating evidence suggests an important role for interleukin 17 (IL-17) in the pathogenesis of several inflammatory diseases, including rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Accordingly, clinical trials aimed at blocking IL-17 have been initiated, but clinical results between patients and across different diseases have been highly variable. The objective was to determine the variability in expression of IL-17A, IL-17F and their receptors IL-17RA and IL-17RC in the synovia of patients with arthritis. Synovial biopsies were obtained from patients with RA (n = 11), PsA (n = 15) and inflammatory osteoarthritis (OA, n = 14). For comparison, synovia from noninflamed knee joints (n = 7) obtained from controls were included. Frozen sections were stained for IL-17A, IL-17F, IL-17RA and IL-17RC and evaluated by digital image analysis. We used confocal microscopy to determine which cells in the synovium express IL-17A and IL-17F, double-staining with CD4, CD8, CD15, CD68, CD163, CD31, von Willebrand factor, peripheral lymph node address in, lymphatic vessel endothelial hyaluronan receptor 1, mast cell tryptase and retinoic acid receptor-related orphan receptor γt (RORγt). IL-17A, IL-17F, IL-17RA and IL-17RC were abundantly expressed in synovial tissues of all patient groups. Whereas IL-17RA was present mostly in the synovial sublining, IL-17RC was abundantly expressed in the intimal lining layer. Digital image analysis showed a significant (P  < 0.05) increase of only IL-17A in arthritis patients compared to noninflamed control tissues. The expression of IL-17A, IL-17F and their receptors was similar in the different patient groups, but highly variable between individual patients. CD4+ and CD8+ cells coexpressed IL-17A, and few cells coexpressed IL-17F. IL-17A and IL-17F were not expressed by CD15+ neutrophils. Mast cells were only occasionally positive for IL-17A or IL-17F. Interestingly, IL-17A and IL-17F staining was also observed in macrophages, as well as in blood vessels and lymphatics. This staining probably reflects receptor-bound cytokine staining. Many infiltrated cells were positive for the transcription factor RORγt. Colocalisation between RORγt and IL-17A and IL-17F indicates local IL-17 production. Increased expression of IL-17A is not restricted to synovial tissues of RA and PsA patients; it is also observed in inflammatory OA. The heterogeneous expression levels may explain nonresponse to anti-IL-17 therapy in subsets of patient

    Synovial IL-21/TNF-producing CD4(+) T cells induce joint destruction in rheumatoid arthritis by inducing matrix metalloproteinase production by fibroblast-like synoviocytes

    No full text
    Bone and cartilage destruction is one of the key manifestations of rheumatoid arthritis (RA). Although the role of T helper (Th)17 cells in these processes is clear, the role of IL-21-producing cells T cells has been neglected. We sought to investigate the role of IL-21 in RA by focusing on the functional characteristics of the main producers of this cytokine, synovial CD4(+)IL-21(+) T cells. We show that the frequency of both synovial fluid (SF) CD4(+)IL-21(+) or CD4(+)IL-21(+)TNF(+) T cells in patients with RA was significantly higher compared with patients with psoriatic arthritis (PsA). The frequency of peripheral blood (PB) IL-21(+)CD4(+) T cells in patients with RA positively correlated with disease activity score 28 (DAS28), serum anticyclic citrullinated peptide (anti-CCP) antibodies and IgM-rheumatoid factor (IgM-RF). IL-21 levels in RA SF were associated with matrix metalloproteinase (MMP)-1 and MMP-3. Related to this, IL-21 induced significantly the secretion of MMP-1 and MMP-3 in RA synovial biopsies. Sorted SF CD4(+)IL-21(+) T cells significantly induced the release of MMP-1 and MMP-3 by fibroblast-like synoviocytes (FLS) compared with medium or CD4(+)IL-21(-) T cells in a coculture system. Neutralization of both IL-21 and TNF resulted in significantly less production of MMP by FLS. The results of this study indicate a new role for synovial CD4(+)IL-21(+)TNF(+) T cells in promoting synovial inflammation/joint destruction in patients with RA. Importantly, IL-21 blockade in combination with anti-TNF might be an effective therapy in patients with RA by inhibiting MMP-induced inflammation/joint destructio

    Impact of Adalimumab Treatment on Interleukin-17 and Interleukin-17 Receptor Expression in Skin and Synovium of Psoriatic Arthritis Patients with Mild Psoriasis.

    Get PDF
    Funder: Abbot BV, The NetherlandsInterleukin (IL)-17 and tumor necrosis factor-alpha (TNF)-α are key players in psoriatic arthritis (PsA) pathogenesis. While both cytokines can be therapeutically targeted with beneficial clinical outcome, it is unclear whether inhibiting one cytokine will affect the other at sites of inflammation. If both act independently, this might provide a rationale for dual or combined inhibition of both cytokines. Here, we evaluated the effect of TNF blockade in PsA patients on IL-17 levels in both skin and synovial tissue biopsies. PsA patients with mild psoriatic skin lesions were randomized to receive either adalimumab or placebo for four weeks. Synovial and skin biopsies were obtained at weeks zero and four. Skin from healthy donors (HDs) was used for comparison. Expression of IL-17A, IL-17F, IL-17RA and IL-17RC was assessed by immunohistochemistry and analyzed with digital image analysis. We found relatively low levels of IL-17 and its receptors in the skin of PsA patients compared to HD, and only IL-17F in the dermis of lesional psoriatic skin was significantly higher compared to HD skin (p = 0.0002). Histologically IL-17A, IL-17F, IL-17RA and IL-17RC in skin and synovial tissue were not downregulated by adalimumab treatment. Thus, in this cohort of PsA patients with mild psoriasis, TNF blockade did not affect the protein levels of IL-17 cytokines and its receptors in skin and synovium, despite reduced cellular inflammation and improved clinical outcome for joint involvement

    Impact of Adalimumab Treatment on Interleukin-17 and Interleukin-17 Receptor Expression in Skin and Synovium of Psoriatic Arthritis Patients with Mild Psoriasis

    No full text
    Interleukin (IL)-17 and tumor necrosis factor-alpha (TNF)-α are key players in psoriatic arthritis (PsA) pathogenesis. While both cytokines can be therapeutically targeted with beneficial clinical outcome, it is unclear whether inhibiting one cytokine will affect the other at sites of inflammation. If both act independently, this might provide a rationale for dual or combined inhibition of both cytokines. Here, we evaluated the effect of TNF blockade in PsA patients on IL-17 levels in both skin and synovial tissue biopsies. PsA patients with mild psoriatic skin lesions were randomized to receive either adalimumab or placebo for four weeks. Synovial and skin biopsies were obtained at weeks zero and four. Skin from healthy donors (HDs) was used for comparison. Expression of IL-17A, IL-17F, IL-17RA and IL-17RC was assessed by immunohistochemistry and analyzed with digital image analysis. We found relatively low levels of IL-17 and its receptors in the skin of PsA patients compared to HD, and only IL-17F in the dermis of lesional psoriatic skin was significantly higher compared to HD skin (p = 0.0002). Histologically IL-17A, IL-17F, IL-17RA and IL-17RC in skin and synovial tissue were not downregulated by adalimumab treatment. Thus, in this cohort of PsA patients with mild psoriasis, TNF blockade did not affect the protein levels of IL-17 cytokines and its receptors in skin and synovium, despite reduced cellular inflammation and improved clinical outcome for joint involvement

    CCR1 blockade inhibits both CCL5/RANTES- and SF-induced RA monocyte migration (A) RA monocyte migration induced by CCL5/RANTES and blocked by anti-CCR1 antibody.

    No full text
    <p>(B) RA monocyte migration induced by SF and blocked by anti-CCR1 antibody. (C) RA monocyte migration induced by CCL5/RANTES and blocked by small molecule CCR1 antagonist (BX471). (D) RA monocyte migration induced by SF and blocked by small molecule CCR1 antagonist (BX471). Data are expressed as mean ± SEM (n = 8).</p

    Demographic and clinical data of patients (synovial fluids).

    No full text
    <p>ACPA, anti-citrullinated protein/peptide antigens; SJC, swollen joint count; TJC, tender joint count; ESR, erythrocyte sedimentation rate; CRP, C reactive protein.</p

    Demographic and clinical data of patients (chemotaxis).

    No full text
    <p>ACPA, anti-citrullinated protein/peptide antigens; SJC, swollen joint count; TJC, tender joint count; ESR, erythrocyte sedimentation rate; CRP, C reactive protein.</p
    corecore