359 research outputs found

    RESIK observations of He-like Ar X-ray line emission in solar flares

    Full text link
    The Ar XVII X-ray line group principally due to transitions 1s2 - 1s2l (l=s, p) near 4 Anstroms was observed in numerous flares by the RESIK bent crystal spectrometer aboard CORONAS-F between 2001 and 2003. The three line features include the Ar XVII w (resonance line), a blend of x and y (intercombination lines), and z (forbidden line), all of which are blended with Ar XVI dielectronic satellites. The ratio G, equal to [I(x+y) + I(z)]/I(w), varies with electron temperature Te mostly because of unresolved dielectronic satellites. With temperatures estimated from GOES X-ray emission, the observed G ratios agree fairly well with those calculated from CHIANTI and other data. With a two-component emission measure, better agreement is achieved. Some S XV and S XVI lines blend with the Ar lines, the effect of which occurs at temperatures greater than 8MK, allowing the S/Ar abundance ratio to be determined. This is found to agree with coronal values. A nonthermal contribution is indicated for some spectra in the repeating-pulse flare of 2003 February 6.Comment: Latex file and 3 ps files. Astrophysical Journal Letters (accepted, June 2008

    Soft X-ray coronal spectra at low activity levels observed by RESIK

    Full text link
    The quiet-Sun X-ray emission is important for deducing coronal heating mechanisms, but it has not been studied in detail since the Orbiting Solar Observatory (OSO) spacecraft era. Bragg crystal spectrometer X-ray observations have generally concentrated on flares and active regions. The high sensitivity of the RESIK (REntgenovsky Spectrometer s Izognutymi Kristalami) instrument on the CORONAS-F solar mission has enabled the X-ray emission from the quiet corona to be studied in a systematic way for the first time. Our aim is to deduce the physical conditions of the non-flaring corona from RESIK line intensities in several spectral ranges using both isothermal and multithermal assumptions. We selected and analyzed spectra in 312 quiet-Sun intervals in January and February 2003, sorting them into 5 groups according to activity level. For each group, the fluxes in selected spectral bands have been used to calculate values parameters for the best-fit that lead to a intensities characteristic of each group. We used both isothermal and multitemperature assumptions, the latter described by differential emission measure (DEM) distributions. RESIK spectra cover the wavelength range (3.3-6.1 A). This includes emission lines of highly ionized Si, S, Cl, Ar, and K, which are suitable for evaluating temperature and emission measure, were used. The RESIK spectra during these intervals of very low solar activity for the first time provide information on the temperature structure of the quiet corona. Although most of the emission seems to arise from plasma with a temperature between 2MK and 3MK, there is also evidence of a hotter plasma (T approx. 10MK) with an emission measure 3 orders smaller than the cooler component. Neither coronal nor photospheric element abundances appear to describe the observed spectra satisfactorily.Comment: Submitting 1 Latex and 7 figure file

    Silicon abundance from RESIK solar flare observations

    Get PDF
    The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active region X-ray spectra in four channels covering the wavelength range 3.8 -- 6.1 \AA in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00 -- 6.05 \AA). The fluxes of the \sixiv Ly-β\beta line (5.217 \AA) and the \sixiii 1s2−1s3p1s^2 - 1s3p line (5.688 \AA) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21A({\rm Si}) = 7.93 \pm .21 (\sixiv) and 7.89±.137.89 \pm .13 (\sixiii) on a logarithmic scale with H = 12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.32.6 \pm 1.3 and 2.4±0.72.4 \pm 0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.Comment: To be published, Solar Physic

    A solar spectroscopic absolute abundance of argon from RESIK

    Full text link
    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 Angstroms and 3.733 Angstroms respectively with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory, and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 pm 0.07 (Ar XVII) and 6.49 pm 0.16 (Ar XVIII) which are in agreement to within uncertainties. The weighted mean is 6.45 pm 0.06, which is between two recent compilations of the solar Ar abundance and suggest that the photospheric and coronal abundances of Ar are very similar.Comment: 4 figure

    Sphinx measurements of the 2009 solar minimum x-ray emission

    Get PDF
    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 x 10^47 cm^-3 and 1.1 x 10^48 cm^-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.Comment: Astrophysical Journal, in press. 14 pp, 3 figure

    Varying Calcium Abundances in Solar Flares seen by Solar Maximum Mission

    Full text link
    We report on calcium abundance A(Ca)A({\rm Ca}) estimates during the decay phases of 194 solar X-ray flares using archived data from the Bent Crystal Spectrometer (BCS) on Solar Maximum Mission (operational 1980~--~1989). The abundances are derived from the ratio of the total calcium X-ray line emission in BCS channel~1 to that in neighboring continuum, with temperature from a satellite-to-resonance line ratio. Generally the calcium abundance is found to be about three times the photospheric abundance, as previously found, indicating a ``FIP'' (first ionization potential) effect for calcium which has a relatively low FIP value. The precision of the abundance estimates (referred to hydrogen on a logarithmic scale with A(H)=12A({\rm H}) = 12), is typically ∼±0.01\sim \pm 0.01, enabling any time variations of A(Ca)A({\rm Ca}) during the flare decay to be examined. For a total of 270 short time segments with A(Ca)A({\rm Ca}) determined to better than 2.3\% accuracy, many (106; 39\%) showed variations in A(Ca)A({\rm Ca}) at the 3σ3\sigma level. For the majority, 74 (70\%) of these 106 segments A(Ca)A({\rm Ca}) decreased with time, and for 32 (30\%) A(Ca)A({\rm Ca}) increased with time. For 79 out of 270 (29\%) we observed constant or nearly constant A(Ca)A({\rm Ca}), and the remaining 85 (31\%) with irregular time behavior. A common feature was the presence of discontinuities in the time behavior of A(Ca)A({\rm Ca}). Relating these results to the ponderomotive force theory of Laming, we attribute the nature of varying A(Ca)A({\rm Ca}) to the emergence of loop structures in addition to the initial main loop, each with its characteristic calcium abundance.Comment: Astrophysical Journal (to be published). 14 pages with 8 figure
    • …
    corecore