140 research outputs found
In vitro effects of lapachol and β-lapachone against Leishmania amazonensis
Leishmaniasis is a neglected disease that affects millions of people worldwide, and special attention should be given to treatment because the available drugs have limitations, which can lead to low therapeutic adherence and parasitic resistance. This study evaluated the activity of the bioactive naphthoquinones, lapachol and β-lapachone, against Leishmania amazonensis. The cell alterations were evaluated in vitro on promastigote and amastigote forms. The lethal dose (LD50) at 24, 48, and 72 h on the promastigote's forms using lapachol was 75.60, 72.82, and 58.85 μg/mL and for β-lapachone was 0.65, 1.24, and 0.71 μg/mL, respectively. The naphthoquinones significantly inhibited the survival rate of L. amazonensis amastigotes at 83.11, 57.59, and 34.95% for lapachol (82.28, 41.14, and 20.57 µg/mL), and 78.49, 83.25, and 80.22% for β-lapachone (3.26, 1.63, and 0.815 µg/mL). The compounds on the promastigote's forms led to the loss of mitochondrial membrane potential, induced changes in the integrity of the membrane, caused damage to cells suggestive of the apoptotic process, and showed inhibition of tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. The results showed that these naphthoquinones are promising candidates for research on new drugs with anti-Leishmania activity derived from natural products
Recommended from our members
Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters
We present the results of a study of optical scattering and backscattering of particulates for three coastal sites that represent a wide range of optical properties that are found in U.S. near-shore waters. The 6000 scattering and backscattering spectra collected for this study can be well approximated by a power-law function of wavelength. The power-law exponent for particulate scattering changes dramatically from site to site (and within each site) compared with particulate backscattering where all the spectra, except possibly the very clearest waters, cluster around a single wavelength power-law exponent of −0.94 . The particulate backscattering-to-scattering ratio (the backscattering ratio) displays a wide range in wavelength dependence. This result is not consistent with scattering models that describe the bulk composition of water as a uniform mix of homogeneous spherical particles with a Junge-like power-law distribution over all particle sizes. Simultaneous particulate organic matter (POM) and particulate inorganic matter (PIM) measurements are available for some of our optical measurements, and site-averaged POM and PIM mass-specific cross sections for scattering and backscattering can be derived. Cross sections for organic and inorganic material differ at each site, and the relative contribution of organic and inorganic material to scattering and backscattering depends differently at each site on the relative amount of material that is present
Structural Basis for GTP-Dependent Dimerization of Hydrogenase Maturation Factor HypB
Maturation of [NiFe]-hydrogenase requires the insertion of iron, cyanide and carbon monoxide, followed by nickel, to the catalytic core of the enzyme. Hydrogenase maturation factor HypB is a metal-binding GTPase that is essential for the nickel delivery to the hydrogenase. Here we report the crystal structure of Archeoglobus fulgidus HypB (AfHypB) in apo-form. We showed that AfHypB recognizes guanine nucleotide using Asp-194 on the G5 loop despite having a non-canonical NKxA G4-motif. Structural comparison with the GTPγS-bound Methanocaldococcus jannaschii HypB identifies conformational changes in the switch I region, which bring an invariant Asp-72 to form an intermolecular salt-bridge with another invariant residue Lys-148 upon GTP binding. Substitution of K148A abolished GTP-dependent dimerization of AfHypB, but had no significant effect on the guanine nucleotide binding and on the intrinsic GTPase activity. In vivo complementation study in Escherichia coli showed that the invariant lysine residue is required for in vivo maturation of hydrogenase. Taken together, our results suggest that GTP-dependent dimerization of HypB is essential for hydrogenase maturation. It is likely that a nickel ion is loaded to an extra metal binding site at the dimeric interface of GTP-bound HypB and transferred to the hydrogenase upon GTP hydrolysis
Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks
Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer
Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine “hot spots” involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a “conformational selection model” of the Hsp90 mechanism, whereby the protein may exist in a dynamic equilibrium between different conformational states available on the energy landscape and binding of a specific partner can bias the equilibrium toward functionally relevant complexes
Krüppel-like factor 6 is a transcriptional activator of autophagy in acute liver injury
Kruppel-like factor 6 (KLF6) is a transcription factor and tumor suppressor. We previously identified KLF6 as mediator of hepatocyte glucose and lipid homeostasis. The loss or reduction of KLF6 is linked to the progression of hepatocellular carcinoma, but its contribution to liver regeneration and repair in acute liver injury are lacking so far. Here we explore the role of KLF6 in acute liver injury models in mice, and in patients with acute liver failure (ALF). KLF6 was induced in hepatocytes in ALF, and in both acetaminophen (APAP)- and carbon tetrachloride (CCl4)- treated mice. In mice with hepatocytespecific Klf6 knockout (DeltaKlf6), cell proliferation following partial hepatectomy (PHx) was increased compared to controls. Interestingly, key autophagic markers and mediators LC3-II, Atg7 and Beclin1 were reduced in DeltaKlf6 mice livers. Using luciferase assay and ChIP, KLF6 was established as a direct transcriptional activator of ATG7 and BECLIN1, but was dependent on the presence of p53. Here we show, that KLF6 expression is induced in ALF and in the regenerating liver, where it activates autophagy by transcriptional induction of ATG7 and BECLIN1 in a p53-dependent manner. These findings couple the activity of an important growth inhibitor in liver to the induction of autophagy in hepatocytes
- …