4,343 research outputs found

    Renormalization Group Method and Reductive Perturbation Method

    Full text link
    It is shown that the renormalization group method does not necessarily eliminate all secular terms in perturbation series to partial differential equations and a functional subspace of renormalizable secular solutions corresponds to a choice of scales of independent variables in the reductive perturbation method.Comment: 5 pages, late

    M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems

    Get PDF
    We have searched the Kepler light curves of ~3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have three or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way of discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ~5% occurrence rate of rapid rotation among the ~3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The Astrophysical Journa

    The Cyprus Women’s Health Research (COHERE) initiative: normative data from the SF-36v2 questionnaire for reproductive aged women from the Eastern Mediterranean

    Get PDF
    Purpose: Describe the health-related quality of life for a representative cohort of women aged 18–55 in Northern Cyprus. Methods: We utilised the SF-36-Health-Survey-version-2 (SF-36v2) questionnaire as part of the COHERE Initiative study to calculate the eight physical and mental subscale scores, as well as the two overall summary measures for physical and mental health, where we present results using Cyprus-specific scoring as well as scores based on the test developers’ algorithms. We examined associations between sociodemographic characteristics for both scores. Results: A total of 7089 women fully completed the SF-36v2 questionnaire (mean age = 36.9), which was reliable and valid in this population. We observed better physical health in ages 18–25 compared to 46–55 (53.32 vs. 46.72 (p < 0.001)) and better mental health in women aged 46–55 compared to 18–25 (52.07 vs. 47.95 (p < 0.001)). Women in employment had better physical and mental health compared to those who were unemployed (physical: 50.25 vs 49.95, p < 0.001 and mental: 50.25 vs 49.24, p = 0.083) and scores increased as educational attainment increased (physical: 47.55 for primary to 51.58 for postgraduate, mental: 48.88 to 50.59, p < 0.001). Turkish Cypriot women had higher scores than Turkish women (physical: 50.42 vs 49.30, mental: 50.43 vs 49.10, p < 0.001). Conclusion: These are the first population normative values published from a large representative sample of women between 18 and 55 years from the Eastern Mediterranean region. We found better physical health in younger women and better mental health in older women. Turkish Cypriot women and non-migrant women had better mental health, and HRQOL was highest in those in paid employment and those with a higher educational achievement

    Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations

    Full text link
    We study the onset of patterns in vertically oscillated layers of frictionless dissipative particles. Using both numerical solutions of continuum equations to Navier-Stokes order and molecular dynamics (MD) simulations, we find that standing waves form stripe patterns above a critical acceleration of the cell. Changing the frequency of oscillation of the cell changes the wavelength of the resulting pattern; MD and continuum simulations both yield wavelengths in accord with previous experimental results. The value of the critical acceleration for ordered standing waves is approximately 10% higher in molecular dynamics simulations than in the continuum simulations, and the amplitude of the waves differs significantly between the models. The delay in the onset of order in molecular dynamics simulations and the amplitude of noise below this onset are consistent with the presence of fluctuations which are absent in the continuum theory. The strength of the noise obtained by fit to Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in fluid convection experiments, and is comparable to the noise found in experiments with oscillated granular layers and in recent fluid experiments on fluids near the critical point. Good agreement is found between the mean field value of onset from the Swift-Hohenberg fit and the onset in continuum simulations. Patterns are compared in cells oscillated at two different frequencies in MD; the layer with larger wavelength patterns has less noise than the layer with smaller wavelength patterns.Comment: Published in Physical Review

    Non-universal exponents in interface growth

    Full text link
    We report on an extensive numerical investigation of the Kardar-Parisi-Zhang equation describing non-equilibrium interfaces. Attention is paid to the dependence of the growth exponents on the details of the distribution of the noise. All distributions considered are delta-correlated in space and time, and have finite cumulants. We find that the exponents become progressively more sensitive to details of the distribution with increasing dimensionality. We discuss the implications of these results for the universality hypothesis.Comment: 12 pages, 5 figures; to appear in Phys. Rev. Let

    Transport Coefficients for Granular Media from Molecular Dynamics Simulations

    Full text link
    Under many conditions, macroscopic grains flow like a fluid; kinetic theory pred icts continuum equations of motion for this granular fluid. In order to test the theory, we perform event driven molecular simulations of a two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation, high densities, and small numbers of particles, we find that continuum theory describes the system well. With a bath that heats the gas homogeneously, strong velocity correlations produce a slightly smaller energy loss due to inelastic collisions than that predicted by kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients are induced. Determination of the resulting fluxes allows calculation of the thermal conductivity and shear viscosity, which are compared to the predictions of granular kinetic theory, and which can be used in continuum modeling of granular flows. The shear viscosity is close to the prediction of kinetic theory, while the thermal conductivity can be overestimated by a factor of 2; in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199

    Theoretical Analysis of the "Double-q" Magnetic Structure of CeAl2

    Full text link
    A model involving competing short-range isotropic Heisenberg interactions is developed to explain the "double-q" magnetic structure of CeAl2_2. For suitably chosen interactions, terms in the Landau expansion quadratic in the order parameters explain the condensation of incommensurate order at wavevectors in the star of (1/2 −δ-\delta, 1/2 +δ+\delta, 1/2)(2π/a)(2\pi/a), where aa is the cubic lattice constant. We show that the fourth order terms in the Landau expansion lead to the formation of the so-called "double-q" magnetic structure in which long-range order develops simultaneously at two symmetry-related wavevectors, in striking agreement with the magnetic structure determinations. Based on the value of the ordering temperature and of the Curie-Weiss Θ\Theta of the susceptibility, we estimate that the nearest neighbor interaction K0K_0 is ferromagnetic, with K0/k=−11±1K_0/k=-11\pm 1K and the next-nearest neighbor interaction JJ is antiferromagnetic with J/k=6±1J/k=6 \pm 1K. We also briefly comment on the analogous phenomenon seen in the similar system TmS.Comment: 22 pages, 6 figure
    • …
    corecore