63 research outputs found

    On the Internal Structure of Relativistic Jets

    Get PDF
    A magnetohydrodynamic model is constructed for a cylindrical jet immersed in an external uniform magnetic field. It is shown that, as in the force-free case, the total electric current within the jet can be zero. The particle energetics and the magnetic field structure are determined in a self-consistent way; all jet parameters depend on the physical conditions in the external medium. In particular, we show that a region with subsonic flow can exist in the central jet regions. In actual relativistic jets, most of the energy is transferred by the electromagnetic field only when the magnetization parameter is sufficiently large, σ>106\sigma>10^6. We also show that, in general, the well-known solution with a central core, Bz=B0/(1+ϖ2/ϖc2)B_z = B_0/(1+\varpi^2/\varpi_c^2), can not be realized in the presence of an external medium.Comment: 19 pages, 2 figure

    Characterising the biophysical properties of normal and hyperkeratotic foot skin

    Get PDF
    BACKGROUND: Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. METHODS: Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. RESULTS: Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. CONCLUSIONS: This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions. KEYWORDS: Biophysical parameters; Callus; Corns; Dry skin; Heel fissures; Plantar foot skin hyperkeratosis; Quantification; Skin classification (SELs); Xerosi

    The human keratins: biology and pathology

    Get PDF
    The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family
    corecore