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Abstract Animals choose actions based on imperfect,
ambiguous data. “Noise” inherent in neural processing
adds further variability to this already-noisy input signal.
Mathematical analysis has suggested that the optimal appara-
tus (in terms of the speed/accuracy trade-off) for reaching
decisions about such noisy inputs is perfect accumulation of
the inputs by a temporal integrator. Thus, most highly cited
models of neural circuitry underlying decision-making have
been instantiations of a perfect integrator. Here, in accordance
with a growing mathematical and empirical literature, we
describe circumstances in which perfect integration is ren-
dered suboptimal. In particular we highlight the impact of
three biological constraints: (1) significant noise arising within
the decision-making circuitry itself; (2) bounding of integra-
tion bymaximal neural firing rates; and (3) time limitations on
making a decision. Under conditions (1) and (2), an attractor
system with stable attractor states can easily best an integrator
when accuracy is more important than speed.Moreover, under
conditions in which such stable attractor networks do not best
the perfect integrator, a system with unstable initial states can
do so if readout of the system’s final state is imperfect.
Ubiquitously, an attractor system with a nonselective time-
dependent input current is bothmore accurate andmore robust
to imprecise tuning of parameters than an integrator with such

input. Given that neural responses that switch stochastically
between discrete states can “masquerade” as integration in
single-neuron and trial-averaged data, our results suggest that
such networks should be considered as plausible alternatives
to the integrator model.
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1 Introduction

The making of timely choices based on ambiguous,
impoverished stimulus information is a basic part of survival
and success for all living things. The acquisition, processing
and filtering of such information by sensory transduction
organs and multiple central nervous system relays adds noise
to an already noisy fragment of data. Thus, our ability to
produce appropriate behavioral responses in choice situations
is even more impressive than it might naïvely seem.

The dynamics of such decision-making processes has been
studied primarily during perceptual decision-making via two-
alternative forced choice tasks (Shadlen and Newsome 1996;
Ratcliff and Rouder 1998; Platt and Glimcher 1999; Glimcher
2001; Gold and Shadlen 2001; Shadlen and Newsome 2001;
Usher and McClelland 2001; Roitman and Shadlen 2002;
Romo et al. 2002; Glimcher 2003; Romo et al. 2004; Smith
and Ratcliff 2004; Huk and Shadlen 2005; Luna et al. 2005;
Gold and Shadlen 2007; Ratcliff 2008; Stanford et al. 2010;
Yoshida and Katz 2011). In such tasks, a subject makes one of
two distinctive responses depending on which stimulus is pres-
ent (or, alternatively, depending on which is the dominant
stimulus in a mixture); performance is evaluated in terms of
overall accuracy for a given response speed (or range of speeds).

These tasks have been the source of a wealth of models,
each based either on simulations of neural activity (Wang
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2002; Wong and Wang 2006; Wong et al. 2007; Beck et al.
2008) or on the mathematical analysis of diffusion in an
effective potential (Ratcliff 1978; Zhang et al. 2009; Zhou et
al. 2009; Zhang and Bogacz 2010), which can be derived
from models of neural activity (Usher and McClelland
2001; Smith and Ratcliff 2004; Bogacz et al. 2006; Sakai
et al. 2006; Roxin and Ledberg 2008; Eckhoff et al. 2011).
Regardless of their bases, decision-making models are typ-
ically judged according to two distinct criteria. First, how
good—or, as it is often stated, how close to optimal—is the
model at producing correct responses in a timely manner,
given limited evidence and noise in the system? Second,
how well does the model reproduce key behavioral (Feng et
al. 2009) and electrophysiological (Wang 2001; Ditterich
2006) results beyond the inevitable increase in accuracy with
either increased stimulus presentation time or with increased
difference between stimulus representations, which arises
naturally in all models?

Signal detection theory tells us that perfect integration of
the difference in evidence for two alternatives is the optimal
method for choosing between these alternatives (Wald 1947;
Wald andWolfowitz 1948). A corollary of this result to which
many neuroscientists ascribe is that perfect integration is
therefore also the optimal framework in which to study the
neural basis of decision-making (Gold and Shadlen 2007).
That is, integrators, typically implemented as drift diffusion
models with fixed thresholds (Ratcliff 1978), are thought to
provide both the most optimal models of decisionmaking, and
to best reproduce the basic behavioral (Ratcliff and McKoon
2008) and neural data, the latter of which suggest accumula-
tion of information across time, at least when spiking is
averaged across trials (Roitman and Shadlen 2002; Ratcliff
et al. 2003). Moreover, biologically realistic circuits of neu-
rons can approximate such integrators (Wang 2002), further
supporting the conclusion that they are the appropriate model
type to explain decision making in the nervous system.

There remain reasons to question this conclusion, however.
First, the proof of optimality implicitly assumes either un-
bounded integration or unlimited time for a response. It is less
clear whether an integrator is still favored once biologically
plausible constraints (Bertsekas 2005; Frazier and Yu 2007;
Cisek et al. 2009; Nigoyi and Wong-Lin 2010; Zhang and
Bogacz 2010; Eckhoff et al. 2011; Standage et al. 2011)
enforce a timely readout of activity in the decision-making
circuit. Even with perfect readout of the final state of the
system, the perfect integrator may not be optimal if firing rates
and response times are limited (Zhang and Bogacz 2010).
Finally, any neural implementation of a perfect integrator re-
quires both the precise tuning of connection strengths and low
within-circuit noise (Seung 1996; Usher and McClelland
2001; Wang 2002; Miller et al. 2003; Eckhoff et al. 2009),
such that more naturalistic conditionsmight again favor robust
approximations to an integrator based on multiple discrete

attractors (Koulakov et al. 2002; Goldman et al. 2003), for
which performance can be enhanced by additional noise
(Deco et al. 2009; Miller and Katz 2010; Deco et al. 2013).

Furthermore, some of the extant behavioral data actually
favor non-integrator models over perfect integrators. While
most models reproduce the positive skewness of response
times (a longer tail in the distribution for slow response times)
(Ratcliff and Rouder 1998; Usher and McClelland 2001;
Wong and Wang 2006), if bias and starting conditions are
fixed, only nonlinear models reproduce the oft-observed phe-
nomenon of slower responses on error trials than correct trials
(Ditterich 2006; Wong and Wang 2006; Broderick et al.
2009). Perfect integrators must implement two separate mech-
anisms to produce slow and fast error responses: the former
are produced by trial-to-trial variability in stimulus strength,
while the latter are produced by trial-to-trial variability in the
initial state of the system (Ratcliff and Rouder 1998).

Relatedly, the fit between the extant electrophysiological
data and the predictions of an integrator model may not be as
strong as once thought. Specifically, it has recently become
clear that apparent ramps in neural activity can in some cir-
cumstances be artifactual results of across-trial averaging.
Hidden-Markov model analyses of multi-unit neural activity
(Jones et al. 2007), for instance, suggest that in some systems
neural activity jumps between discrete states (Seidemann et al.
1996; Deco andRolls 2006; Deco andMarti 2007; Okamoto et
al. 2007; Eckhoff et al. 2009; Eckhoff et al. 2011; Ponce-
Alvarez et al. 2012) but see (Bollimunta et al. 2012) with
timing that varies from trial to trial. In such situations, the
standard procedure of averaging across trials aligned to stim-
ulus onset obscures the inherent structure of the system, forc-
ing the emergence of an apparent ramp (Marti et al. 2008;
Miller and Katz 2011). Without multi-neuronal data, such
discrete jumps in activity are particularly difficult to recognize
(but see (Okamoto et al. 2007)) or disprove, and thus it is as of
yet unclear whether the activity of classically-defined decision-
making neural ensembles have such structure.

Here we investigate conditions under which an attractor-
based neural circuit, whose dynamics is most naturally
described as jumps between discrete states (Deco et al.
2009; Miller and Katz 2010), could produce more accurate
decisions than a perfectly linear integrating circuit. We have
previously demonstrated that a multi-state attractor network
built to reproduce such “jumpy” single-trial responses can
out-perform (in terms of percent correct identification of
appropriate taste-related behavior) the same network set to
perform integration (Miller and Katz 2010). Here we present
a more complete, rigorous comparison of perfect integrator
and discrete attractor-based models.

We begin with the introduction of a simple time limit (a
feature of many, if not most, sensorimotor decisions); we
chose to begin with this constraint in order to put the perfect
integrator in the best position—a model is less likely to reach
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the decision threshold in a finite time (we refer to the model as
being “undecided” in such trials) when that system’s initial
state is a stable attractor than when it is smoothly integrating.
We then assess a range of methods for resolving such
“undecided” trials, including the minimally accurate method
(“guessing”) whereby 50 % of the trials that do not reach
threshold are treated as correct, and a perfect mathematical
readout whereby the sign of the decision variable determines
the response, irrespective of the threshold. In between these
extremes, we assess several biologically realistic mechanisms
for reducing or eliminating undecided trials, each of which
(see Methods for detailed descriptions) consists of either
abruptly (“forcing a response”) or smoothly (an “urgency-
gating signal”) pushing the system in the direction of the sign
of the decision variable.

After describing a large number of simulations, the vast
majority of which demonstrate limitations of the integrator
model, we proceed to: 1) briefly explain how these results are
consistent with previous work; and to 2) more closely exam-
ine extant behavioral and electrophysical data in relation to the
models.

The sort of urgency-gating signal used in our simulations,
which behavioral (Cisek et al. 2009) and electrophysiological
data (Ditterich 2006; Churchland et al. 2008; Broderick et al.
2009) suggest arises during decision-making, speeds the like-
lihood of a response as time passes, as a reflection of the
increasing cost of time spent accumulating information with-
out acting upon a decision (Drugowitsch et al. 2012). We
incorporate three methods for producing such an urgency-
gating signal; specifically, we compare the implementation
used by Cisek et al. (2009) to explain the relative lack of
importance or weighting of early evidence compared to late
evidence—a temporally ramping multiplicative factor (i.e.
gain modulation) applied to the inputs to the decision-
making system (see also (Ditterich 2006; Eckhoff et al.
2009; Nigoyi and Wong-Lin 2010; Eckhoff et al. 2011;
Standage et al. 2011))—with both a ramping additive input
current to the system and ramping decreases in the decision
threshold (Bertsekas 2005; Frazier and Yu 2007). Each such
signal is stimulus-nonspecific and could be produced by slow
decay or rise in concentration of a neuromodulator such as
norepinephrine (Shea-Brown et al. 2008), so is distinct from
an integrator or accumulator.

Our formalism is a greatly simplified description of the
dynamics of true neural circuitry, but it is complex enough that
we cannot produce a single formula to fit to quantities such as
a reaction time distribution. Other models do produce such
analytic formulae, which gives them the benefit that parame-
ters—such as level of noise, or threshold for response—can be
adjusted with relative ease to produce best fits to experimental
data.(Ratcliff et al. 2003; Eckhoff et al. 2008; Roxin and
Ledberg 2008; Feng et al. 2009). Nevertheless, use of now-
standard optimization routines with repeated calculations of

probability distributions render trivial the fitting of parameters
to data for more complicated models such as ours.

Within this formalism, we are able to compare multiple
models of decision-making under a range of conditions,
adjusting a single nonlinearity parameter to contrast perfect
integrators (i. e., models with a nonlinearity of zero in our
formalism), such as the drift diffusion model, with nonlinear,
attractor-based models—two types of models that both repro-
duce an impressive range of behavioral and electrophysiolog-
ical results. We analyze the decision-making accuracy of each
model and assess a number of mechanisms that could improve
accuracy, in the context of sensitivity to their biological plau-
sibility. Moreover, we measure robustness of the results to
imperfect tuning of parameters of the sort that almost certainly
arises when the model is implemented within the brain’s
neural circuitry. These analyses demonstrate that under many
realistic conditions, nonlinear circuits that are not perfect in-
tegrators produce more accurate and more robust decision-
making than the perfect integrator—a conclusion that, while
suggested before, has not been tested in such a parametric
manner previously.

2 Materials and methods

Our results are based on the temporal dynamics of the prob-
ability distribution of neural firing rates in a bounded system
with fixed thresholds (Kiani et al. 2008). The probability
distribution evolves following a deterministic term in the
dynamics, which adds a constant drift term toward threshold
in the perfect integrator, or produces a small shift in the
distribution in the model with barriers (see Fig. 1). All models
include a diffusion term, D, representing the variance in firing
rates due to noise—such noise is essential for decisions to be
made in models with a barrier. We also produce trajectories of
firing rate as a function of time, to generate individual trials
that can be compared with experiment. However, our calcu-
lations of quantities such as decision-making accuracy and the
distribution of responses times do not depend on sampling
trials, and are exact to within the precision of our numerical
calculations (to within 10−4 for any probability value).

2.1 Analysis of decision-making circuitry via a firing-rate
model

Groups of spiking neurons with recurrent self-excitation and
recurrent cross-inhibition can implement winner-takes-all
decision-making (Wang 2002). Two such groups are needed
to generate a binary decision based on two inputs, whereby
each group receives one input. During a trial in which the
“correct” choice is made, the group with greater input be-
comes active, suppressing the group with weaker input. One
can analyze a firing-rate model of this situation (Usher and
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McClelland 2001; Bogacz et al. 2006; Wong and Wang 2006;
Wong et al. 2007; Standage et al. 2011) and find that given
certain conditions, such as fast responses of inhibitory cells
(Wong and Wang 2006; Zhou et al. 2009) the system can be
reduced to a two-variable model, described by the mean firing
rate of each of the two groups of excitatory cells.

In this paper, we consider forms of this two-variable model
that, while simple, contain the key features of neural responses
—namely neural firing rates that rise monotonically with
excitatory input and decrease with inhibitory input, but in
which total firing rate is bounded between zero and a maximal
level, rM. Under even more specific conditions, for instance
when neural responses are linear and synaptic transmission is
included (Usher and McClelland 2001; Bogacz et al. 2006a),
or when excitation and inhibition are balanced, the two-
variable model can be reduced to a single-variable (1D) model
in terms of the difference in firing rates, rD=r1−r2, between
the two pools (Appendix A). Such a single-variable model can
be described by an effective potential (Appendix B, Fig. 1),
wherein the stationary states of the system (minima or maxima
of the potential), the tendency for the rate-difference to drift in
one direction or another (the slope of the potential), and the
difficulty for the system to change from one state to another
(the height of barriers to be crossed) can be easily visualized.
To make the model a perfect integrator requires a further
constraint that the effective potential is flat (that is, showing
no tendency to drift to any preferred rate-difference) in the
absence of input.

The majority of our calculations are for single-variable sys-
tems, for which a single parameter determines the flatness of the
effective potential and thus the proximity of the system to a
perfect integrator. A potential with a positive quadratic term has
a stable state—typically the initial state of the system—and is a
leaky integrator rather than a perfect integrator. Following
deviation from the stable state, the system drifts back with a
time constant inversely proportional to the quadratic
nonlinearity. A potential with a negative quadratic term, mean-
while, is unstable, such that once the system becomes shifted
away from the potential’s maximum, it has a tendency to move
further and further away.

The addition of a uniform applied current to all cells in the
system, such as would arise from nonselective input from
other cortical circuits, can switch a stable quadratic potential
into an unstable one (IS term in Eqs. (20–22)) but does not
affect the potential of a linear integrator. If such a current
ramps up over time, during the period in which a decision
must be made, the effective potential of a non-linear system
can gain an extra, negative quadratic component, the magni-
tude of which increases with said current. Just such a ramping
negative quadratic component, which makes the symmetric
spontaneous state less stable during the decision-making pe-
riod, implements one version of the urgency-gating signal
(Cisek et al. 2009; Standage et al. 2011) in our 1D model
(via Gu(t) in Eq. (1))—we add the same term to all models,
including the perfect integrator, to allow the integrator to also
gain any possible advantages of such a gradual destabilization
of “undecided” trials.

A more realistic and sophisticated analysis of coupled
groups of neurons (Wang 2002; Wong and Wang 2006)
indicates that, as total current is increased without bias, the
system changes from having a single attractor state with
both groups firing at low rates, to a tri-stable system with
the original attractor plus two extra attractors with just either
one of the groups firing at a high rate, and then to a bistable
system in which the original attractor is lost. Further in-
creases of input can produce another tristable system in
which a high activity state for both cell-groups is intro-
duced, which eventually becomes, at highest input currents,
the only stable state. Thus, in our analysis of the neural
dynamics underlying decision-making, we designed our
simplified system such that it could possess as many as
three stable attractor states.

To simulate such a system (i. e., one with up to three stable
attractors), we assume a sextic (i.e. 6th order) potential for the
difference in firing rates. The potential is symmetric about the
origin in the absence of biased input (and thus contains 3 terms
with even powers, see Eqs. (2, 23)). We vary a nonlinearity
(barrier) parameter (b), which scales all nonlinear terms equally,
such that the location of all stable states is maintained while the
barrier heights change (see Eqs. (2, 23)). In a perfect integrator,

a bFig. 1 Effective potential for an
integrator or point-attractor
system. a Perfect integrator with
b=0. b Triple-attractor (sextic
potential) with b=9. a, b Blue:
effective potential with no input.
Brown: effective potential with
an input bias of 20
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b=0. If we set b<0 (as in Fig. 3a) then the initial state becomes
unstable.

Stochastic fluctuations, or noise, are included in the mod-
el through a diffusion coefficient,D, which is proportional to
the variance in firing rate of the spontaneous state, and is the
rate of increase of variance with time in the perfect linear
integrator. D contains two main components: 1) internal
noise, DI, within the recurrent circuit that implements any
decision-making model and that arises from the high coeffi-
cient of variation of spike trains in vivo and the probabilistic
nature of vesicle release in synaptic transmission; and 2)
signal noise, DS, in the inputs to the circuit, arising from
these same neural processing properties as well as any signal
transduction noise in sensory processing. Assuming inde-
pendence of these two noise sources, the total noise variance
is the sum of contributing terms, D=DI+DS, or equivalently,
DI= fID and DS=(1− fI)D, where fI is the fraction of total
noise arising from sources internal to the circuit. Thus, when
we measure a decision-making circuit’s optimal performance
by scaling its inputs with a gain factor, g, the signal noise
variance scales as g2, while the internal noise remains
unchanged, leading to D= fID+g2(1− fI)D=D(g2+ fI− fIg2).
This dependence, combined with id=gi d

(0) produces the
curves in Figs. 4 and 6 as a function of input gain, g, with
different fractions of internal noise, fI.

We define the threshold for decision-making—an absorb-
ing boundary at which point the trial ends, with no further
processing of inputs—to be at a rate-difference slightly larger
than the unstable fixed points of the system. Any input bias
produces a linear term in the potential (“tilting” it, Fig. 1). If
sufficiently large (compared to the nonlinearity in the system),
the bias alone can destabilize the initial (spontaneous) state
and that of the non-preferred decision state. In the absence of
stochastic noise, such a system’s response would perfectly
follow the difference in inputs. By systematically varying
the barrier height through the parameter, b we investigate the
dynamics of jumps between stable states in comparison to
gradual integration when noise is present.

Finally, we note that scaling relationships exist between
variables, such that results for given values of noise variance,
D, threshold, θ, and stimulus bias, ID, are identical in the
perfect integrator to those with respective values D′=k2D,
θ′=kθ and ID

′=kID To produce identical results in the attractor
model, a scaling of the potential (see below) is also required
such that U′(rD)=k

2U(rD /k) where U(rD) is the potential
describing the original attractor. This first scaling relation-
ship allows a comparison of results with either different
thresholds or different stimulus biases. A similar scaling
relationship allows a comparison of results with different
input durations, as results with noise variance, D, stimulus
bias, ID, and stimulus duration, toff, are identical for the
perfect integrator to those with D′=k′D, ID

′=k ′ID and toff
′=

toff /k ′. The attractor model’s results are then identical if the

effective potential is also scaled, from its original U(rD) to U
′(rD)=k′U(rD).

Thus our results with a single value of stimulus strength
and duration are generalizable to other conditions.

2.2 Trajectories

In order to plot trajectories for the one-dimensional system,
we simulate individual instances of the stochastic equation
for the variation of rate differences as a function of time
(using the forward Euler-Maruyama Method). In this case
the dynamics follow:

drD
dt

¼ −
dU rD; tð Þ

drD
þ GU tð Þ þ F tð Þ½ �rD þ

ffiffiffiffi
D

p
η tð Þ ð1Þ

where η(t) is a white-noise term with zero mean and unit
standard deviation, . GU(t) and F(t) are respectively the
urgency-gating signal and the forcing term (see below), each
used in a subset of simulations.

2.3 Mechanisms of urgency-gating signals

We included an urgency-gating signal in a subset of simula-
tions, on the basis of evidence suggesting stimulus-
nonspecific ramping activity during behavioral tasks. Such a
signal could provide a ramping additive current to both cell-
groups, or could provide a ramping multiplicative gain mod-
ulation to all inputs. In the single-variable model, we assess
and compare three different implementations of an additive
ramping current, as well as one implementation of multiplica-
tive gain modulation, totaling four different versions of
urgency-gating signal.

First, we added a destabilizing quadratic term in the poten-
tial, GU(t) in Eq. (1), which increased linearly from zero upon
stimulus onset, to mimic an additive current. The motivation
for including such an effect of an additive current is found in
Eqs. (20–22), which show that in a nonlinear system and
additive current destabilizes the spontaneous symmetric state
with rD=0. We also incorporate such a term in the perfect
integrator model of decision-making, as a fair comparison, but
doing so renders the model no longer a perfect integrator.

Second, we implemented urgency-gating using the same
term, GU(t) in Eq. (1) to mimic an additive current, but with
the trial-averaged linear ramp of gating signal produced by
step functions on individual trials. Thus, the time at which
GU(t) stepped from zero to its maximum, was drawn from a
uniform probability distribution within the interval of the
stimulus duration. Such simulations (data not shown) pro-
duced similar, but slightly more accurate responses than
those with the linearly ramping input.

Our third method of implementing an additive urgency-
gating signal is to decrease the threshold from its standard
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value at stimulus onset to zero by the end of the stimulus.
This third method is instantiated if decisions are reached
when the rate of an individual pool in the 2D model reaches
a fixed value (rather than the rate-difference between the
two pools reaching a fixed value). In such a case, the
increase in individual firing rates caused by an additive
increase in current leads to a reduction in the threshold for
the difference in firing rate (intuitively, the symmetric point
with rD=0 is closer to threshold if the two cell-groups are
firing more, so each closer to their individual thresholds).
With such an implementation, the perfect integrator remains
a perfect integrator, albeit with dynamic thresholds.

The first and third methods are implementations of two
separate consequences of linearly ramping additive current to
the full two-variable system. Thus, when we implement an
additive urgency-gating signal in the two-variable system, we
do not use these separate methods, but simply add the term
Gu(t) directly to the separate inputs for each neural group.

Finally, we included a subset of simulations with an
urgency-gating signal consisting of a multiplicative increase
in the inputs. Assuming a conductance-amplification, wemul-
tiplied the signal by [1+Gu(t)] and the noise variance term, D,
by [1+Gu(t)]

2 where Gu(t) was a linearly ramping function.
Note that, when making a decision based on the difference in
two inputs, a multiplicative gain increases the effective stim-
ulus (as the difference in inputs scales with the gain) whereas
an additive urgency-gating signal has no impact on the effec-
tive stimulus (the difference in inputs is unchanged).

2.4 Forcing a choice

In simulations with weak input bias and low noise, the
perfect integrator with a fixed threshold may fail to perform
optimally simply because it fails to reach the threshold, even
though the weight of integrated evidence is biased toward
correct choice. However, the attractor model always pro-
duces more such “undecided” trials, because it is a “leaky
integrator” whose neural firing rates inevitably drift back
towards zero (and zero rate difference) in the absence of
noise. Thus, compared to chance guessing, any method for
producing readout of trials that do not reach threshold has
more potential to enhance accuracy of an attractor-based
model than the perfect integrator. Models with an urgency-
gating signal are less prone to such “undecided” trials,
though they still can arise, except if the urgency signal is
incorporated by threshold reduction, in which case all trials
reach the threshold.

One commonly used manner of “forcing” an “undecided”
trial is simply to take the sign of the value of the rate-
difference as the indicator of choice (sometimes this is termed
the “Interrogation Paradigm” (Bogacz et al. 2006)). While
such perfect readout is biologically unlikely, we present the
results of such perfect readout in a subset of figures.

We also implemented a forced choice in a more biophys-
ical manner, similar to that with which we implement the
additive urgency-gating signal, but with one difference:
rather than adding a linearly ramping modest unbiased input
to the system (GU(t) in Eqs. (1–2)), to force a choice, we
instead added a large, constant unbiased input for the
100 ms prior to the necessary response time (F(t) in Eqs.
(1–2)). That is,

U rD; tð Þ ¼ b r2D−βr
4
D þ γr6D

� �
−ID tð Þ rD þ δαr3D

� �
−εIS tð Þbr2D− GU tð Þ þ F tð Þ½ �r2D

ð2Þ

where F(t) is a step function equal to IF for toff−0.1< t< toff
and equal to 0 otherwise.

We should point out that our use of F(t) in Eq. (2) allows
us to force a choice by causing the final difference in firing
rates to move away from zero for all systems, including the
perfect integrator. Our analyses show that such a forcing is
only easily achievable in a nonlinear system for which the
dynamics of rate-differences depend on the total input cur-
rent. This effect is visible in Eq. (22), as the negative
quadratic term in the effective potential that is proportional
to the sum of stimulus currents. Such a term appeared in the
dynamic equations for the rate difference (Eqs. (16) and
(20–21)) and is proportional to the nonlinearity in the firing
rate curve for both quadratic and cubic versions. In a linear
system, adding additional input equally to two groups has
no impact on their difference of firing rates. It is only in the
nonlinear attractor formalism above, an equal increase in
applied current to all cells in a decision-making network
leads to an increase in the difference in firing rates, ulti-
mately forcing a choice. Machens and Brody (Machens et
al. 2005) used essentially the same mechanism in a task with
three epochs to produce a forced choice following integra-
tion of evidence. Even though the rate equations do not
justify our inclusion of such a term for the perfect integrator,
we do include the term in a model-independent manner so as
to avoid any favoring of attractor models.

2.5 Compelled response inputs

Most models of tasks with a constant stimulus can repro-
duce the key results of improved accuracy with increased
signal strength of decision-making time, and a unimodal,
positively skewed distribution of response times. However,
models’ predictions of the effects of temporal variation of
the stimulus during decision-making can be more varied.
For example, while perfect integrators weight all evidence
equally, attractor models give most weight to evidence im-
mediately before the decision; unstable models, meanwhile,
give most weight to early information. Thus, examinations
of two tasks with non-constant stimuli allowed us to more
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thoroughly evaluate and compare linear and nonlinear
models.

In the first task, stimulus reversal, the sign of the stimulus
in the single-variable model is switched at the midpoint of
the total duration. Such a switch corresponds to a reversal of
direction in a moving-random-dot perceptual experiment
(Rüter et al. 2012).

The second task follows a pair of recent studies (Salinas
et al. 2010; Shankar et al. 2011), which examined decision-
making in monkeys trained to initiate a response (in a two-
alternative forced choice task) in advance of the presentation
of any information that might indicate which response is
correct. In order to simulate such a task, we use the two-
variable model with the mean current and any urgency-
gating signal, GU(t) applied equally to the two cell-groups
commencing at the start of the simulation but only apply the
difference in current at the midpoint, toff/2, using a total
duration of toff=500ms.

2.6 Solving the time evolution of the probability density
function

In order to assess the decision-making accuracy of different
systems over ranges of parameters, our principle method is
to solve the time-evolution of the probability density func-
tion, P(rD, t) over a fixed stimulus duration of 2s in a system
with absorbing boundaries marking the decision threshold.
The probability density function indicates the likelihood of
the rate-difference, rD, at a particular value at a given time, t.
A single calculation of the probability density function can
take the place of a large number of simulated trials (and in
fact describes the exact probability of any possible outcome
for a trial) so its calculation is a much more efficient method
for describing the system than brute force simulation.

The dynamics of the probability density function follow
the Fokker-Plank equation, which includes two terms (Eq.
(3)). The first, diffusive term contains the effects of noise
and spreads out the probability density function as time
progresses, adding variability. The second, deterministic
term causes the system to follow any input bias or move
toward an attractor state according to the deterministic rate
equations (e.g. Eq. (9)). Thus the Fokker-Plank equation can
be written as:

∂P rD; tð Þ
∂t

¼ −
D

2

∂2P rD; tð Þ
∂r2D

−
∂

∂rD
P rD; tð Þ dU rD; tð Þ

drD

� �

¼ −
D

2

∂2P rD; tð Þ
∂r2D

þ ∂
∂rD

P rD; tð Þ drD
dt

� � ð3Þ

where the effective potential, U(rD,t), is stimulus-dependent
and can in general possess three attractor states (Fig. 1). For
our standard parameters, with a choice-threshold set at ±20Hz,
we fix the location of attractor states at 0 and ±30Hz with the

unstable fixed points at ±17Hz. Our results do not qualitatively
depend on these values, so long as the threshold for making a
response is not much greater than the highest stable steady
states of the system (i.e. a rate-difference of ±30Hz with these
parameters). Indeed, quadratic and quartic potentials (with a
single steady state at rD=0) produce almost identical results to
the sextic potential (data not shown). We vary the stability of
attractors (i.e. the height of barriers between stable states)
through a single parameter, b. This parameter is zero for a
perfect integrator, greater than zero for a model with a stable
initial state, and less than zero for a model with an unstable
initial state.

We assume the probability density function to be initiated as
a δ-function at zero rate-difference (P(rD, 0)=δ(rD)) denoting a
hard reset, so that the firing rates of the two groups are equal at
the beginning of any trial. For each time step of the calculation,
we accumulate the probability distribution crossing either
threshold as the probability that a response has been reached
in that time interval. We then set the probability distribution
to zero outside the threshold (that is we assume absorb-
ing boundaries and a fixed threshold as suggested by
electrophysiological data (Kiani et al. 2008)).

The total fraction of responses categorized as “correct”
corresponds to the sum over all time steps of the accumulated
probability distribution reaching the positive threshold. The
total fraction of responses deemed incorrect is a similar sum
of the distribution reaching the negative threshold. We assess
percent correct/incorrect and response latencies in a range of
networks with different parameters, as shown in Table 1. D in
this table is the level of noise variance, which determines
likelihood of errors and spread of response times, values of
which were chosen to lead to spontaneous firing rates in the
absence of inputs, in the range of 1Hz to 5Hz, as is typical of
cortical excitatory neurons. The input bias, ID(t), is the strength
of the signal to be integrated. The range of the urgency-gating
signal, GU(t), determines how easily the system can switch
from a strongly stable to a strongly unstable spontaneous state
over the course of stimulus presentation. The time to stimulus-
onset, ton, determines the amount of variability in the system at
the time of stimulus onset. In the majority of protocols, the
stimulus remained for a fixed duration, up to a time, toff, at
which time we either forced a response (see above) or assigned
“undecided” trials (the fraction that had not reached threshold)
equally as “correct” or “error” trials, or assigned all trials with a
final value of rD>0 as correct and those with rD<0 as incorrect
(perfect mathematical readout).

2.7 Probability density function for two variables (2D)

To ensure that our results for the single-variable system with
an effective potential apply to the complete system with two
variables (Table 2), we went on to simulate the evolution of
the probability density function using the two rate variables, r1
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and r2 (rather than just their difference, rD=r1−r2). Equations
(6) and (17) describe the deterministic terms ( dr1dr and dr2

dt ).
Adding a diffusion term (D′=D/2) leads to:

∂P r1; r2; tð Þ
∂t

¼ −
D0

2

∂2P
∂r21

þ ∂2P
∂r22

� �
þ ∂

∂r1
P
dr1
dt

� �
þ ∂

∂r2
P
dr2
dt

� �
ð4Þ

We simulated the system on a discretemeshwithΔr=0.2Hz,
and confirmed key results using a finer mesh (Δr=0.05Hz).
Similarly we confirmed all results to be accurate to better than 1
part in 1000with a decrease inΔt by a factor of 10 and tomatch
the equivalent one-dimensional simulations of a quartic
potential (Eq. (22)).

2.8 Simulation details

We simulated all dynamical equations in Matlab (Mathworks,
Natick, MA) using the forward Euler-Maruyama method.
Time steps, Δt, were chosen such that results did not change
by more than 1 part in 10,000 using a 10-fold lower time step.
This led toΔt=2×10−6s for all cases withD=2500Hz2s−1and
Δt=5×10−5s for D=100Hz2s−1 in the absence of a forcing
current andΔt=1×10−5s in all other cases. For Fokker-Plank
simulations the “spatial” grid used ΔrD=0.2Hz, though key
results were verified (unchanged to 1 part in 1000) using a
finer mesh with ΔrD=0.05Hz. Code is available by visiting
the website: http://people.brandeis.edu/~pmiller/Decision_
code.

3 Results

3.1 Optimality of single-variable models

Single variable models are those in which the difference in
firing rates is the only variable of importance—i. e., in

which the dynamics of the system and response times de-
pend only on the rate-difference between two neural groups.
For such models an effective potential can be produced
whose slope describes the direction of deterministic change
in rate-difference. A static model is one whose parameters
do not change over time—equivalently, after stimulus onset
the effective potential is static. This represents a neural
circuit with fixed connections responding to a constant
input, and thus does not contain any urgency-gating signal.
Below, we examine optimality in this sort of model, describ-
ing first the basic result and then the results of various
parameter manipulations.

3.1.1 Decision-making accuracy with attractors and barriers
to diffusion

In our standard simulations, starting with a “moderate”
noise level of D=900Hz2s−1, we find that increasing the
nonlinearity factor from zero—i. e., turning the network
from an ideal integrator into a network that hops from
attractor to attractor—improved accuracy (Fig. 2a, solid
green trace). The nonlinearity factor produces a barrier to
noise-driven diffusion, reducing the spread of the probabil-
ity distribution. This had two, opposing results. First, noise-
driven errors—namely incorrect responses—became rarer
with increasing barrier height (Fig. 2a, dashed red trace).
At the same time, the number of “undecided” trials, for
which threshold is not reached in the allotted 2 s of decision
time, increased with barrier height (Fig. 2a, dot-dashed
magenta trace); beyond an optimal barrier height, the mean
response time took longer than the allowed decision time.
However, for a range of barrier heights, the dominant effect
was reduction in the error probability—the greatest accuracy
was achieved with a non-zero barrier.

In the lower-noise system (D=100 Hz2s−1) introduction
of a barrier via a positive nonlinearity did not improve
accuracy (Fig. 2b, solid green trace), because even without

Table 1 Parameters for
Fokker-Planck equations for 1-D
effective potential

Parameter Symbol Standard Value Range Units

Diffusion constant (noise variance) D 900 100; 900; 2500 Hz2s−1

Bias term iD 20 20 –

Stimulus duration toff 2 2–∞ s

Choice threshold θ 20 10–100 Hz

Time constant τ 0.010 0.010 s

Quadratic term α 0–60 0–60 –

Quartic factor β 4/900 4/900; 1/900 –

Sextic factor γ β/1200 β/1200; β/4800 –

Urgency gating maximum GU
max 0 0–20 –

Forcing term IF 0 0; 200 –

Input gain g 1 0–3 –

Internal fraction of noise fI N/A 0.25, 0.5, 0.75 –
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a barrier to diffusion of firing rates, the threshold was often
not reached within the 2 s of integration time. Thus, the
number of undecided trials (Fig. 2b, dot-dashed magenta
trace), rather than the number of incorrect responses
(Fig. 2b, dashed red trace), became the rate-limiting factor
on accuracy in this case.

The negative impact of undecided trials in models with a
barrier to diffusion is greatly ameliorated if the response can
be determined by a perfect readout of the final sign of the
decision variable (Fig. 2b, solid black trace). Since such
perfect readout is unlikely in a real biological system, in later
sections we will assess how biologically plausible mecha-
nisms can improve accuracy of otherwise “undecided” trials
towards that of a perfect readout.

To summarize, Fig. 2 shows that given a specific fixed
input, a specific fixed threshold and a specific time limit for
responses, an integrator can be, but need not, be the most
accurate model, even though adding that time limit causes
more “undecided” trials in the nonlinear model. Adding a
barrier in Fig. 2a improves accuracy because it slows re-
sponses; the integrator responds in much less time than the
2 s available, but more of the quickest responses are errors.

3.1.2 Adjustment of response times via changing the location
of a fixed threshold

In a later section we will go more deeply into an assessment of
optimality when taking response time into account, but in the
following two subsections we examine methods whereby the
system could be improved simply by optimizing static param-
eters. We assess two methods that have reasonable claims to
biological plausibility, namely adjustment of the decision
threshold (as in (Lo and Wang 2006; Simen et al. 2006;
Simen et al. 2009; Bogacz et al. 2010)—this subsection) and
modulation of input gain (as in (Brown et al. 2005; Shea-
Brown et al. 2008; Eckhoff et al. 2009)—see next subsection).

We assessed the system’s accuracy as a function of the
static decision-making threshold—i.e. the firing rate needed
to produce a response—under both low noise conditions (in
which the perfect integrator produced many “undecided”
responses) and high noise conditions (in which the perfect
integrator reached threshold too quickly compared to the
time available for stimulus integration). In the system with
low noise, we found that the accuracy of the perfect inte-
grator was greatest at a threshold below the standard level

Table 2 Parameters for 2-D
Fokker-Planck equations Parameter Symbol Standard Value Range Units

Diffusion constant (noise variance) D′=D/2 450 50; 450; 1250 Hz2s−1

Choice threshold θ 20 20 Hz

Time constant τ 0.010 0.010 s

Maximum rate rM 100 100 Hz

Maximum current IM 200 200 –

Sum of stimuli IS 40 40–80 –

Bias of stimuli ID 0.8 0.8 –

Stimulus Duration toff 2 0.1–∞ s

Nonlinearity b 0–0.5 0–0.5 –
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Fig. 2 Probability of incorrect response decreases with increasing height
of effective potential barrier. aModerate noise, D=900Hz2s−1, equivalent
to 3Hz spontaneous activity. b Low noise, D=100Hz2s−1, equivalent to
1Hz spontaneous activity. a, bDotted blue=correct responses;Dashed red

=incorrect responses; Dot-dashed magenta=no response (undecided);
Solid green=minimum accuracy=correct+(undecided)/2; Solid black=
maximum accuracy=probability of final rate greater than zero. Results
are from 1D system with sextic potential and fixed thresholds
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used in Fig. 2 (20Hz), while the optimal accuracy of a
system with moderate noise was achieved at a threshold
above the standard level. In both low and moderate noise,
parametric variation of the threshold demonstrated the opti-
mal accuracy of the perfect integrator was better than the
optimal accuracy of any nonlinear system with a static
barrier produced by a positive nonlinearity (Fig. 3a, dashed
blue versus solid green traces). Rendering the initial state
unstable via a negative nonlinearity, however, reliably
resulted in improved accuracy and the highest absolute
accuracy, for a non-integrator (Fig. 3a, dotted red trace).
Yellow regions represent improvement in accuracy realized
by inclusion of non-linearity.

3.1.3 Optimal performance via adjusting the level of a fixed
input gain is constrained by internal circuit noise

The early stages of sensory processing modulate the ampli-
tude and gain of any external signal, quite possibly moving
them toward the optimal range for later processing. Indeed,
it has been suggested that one function of norepinephrine is
to produce precisely such gain modulation of the inputs to
and within the decision-making circuitry (Brown et al. 2005;
Eckhoff et al. 2009). Thus it is reasonable to ask what effect
scaling of the inputs—and of any associated noise—has on
accuracy, and whether optimization of this static parameter
favors integrators, stable attractors, or unstable fixed points.

Of course, the “associated noise” is actually a sum of two
sources of noise—input and internal (i.e. within the decision-
making circuit). The former of these most likely scales with
input gain (Gold and Shadlen 2000, 2003), while the latter

does not. We therefore examined how performance was af-
fected by parametric adjustments of the proportion of the total
noise making up each fraction. Specifically, for a given pro-
portion of internal noise at a gain of unity, whose value we
held constant, we scaled both the input signal and the standard
deviation of the input noise by a factor—the input gain—that
we parametrically varied. Such an effect would arise by a
scaling of the conductance of afferent synapses.

We found, in the system which possessed “medium”
noise at a gain of unity, that the optimal accuracy of the
model with a stable attractor and barrier (Fig. 4, solid green
traces) is higher than that of the integrator (Fig. 4, dashed
blue traces), except at a very low fraction (≤ 10 %) of
internal noise (Fig. 4a–c). This medium noise system bene-
fits from a reduction of input gain, because in our standard
protocol (with a gain of unity) decisions were made more
quickly—and thus with more errors—than is optimal.
Reductions in input gain (which reduce the signal) can
improve decision-making accuracy when they reduce the
noise in the system sufficiently.

Since “undecided” trials are rare in the system with
medium noise, implementing a perfect readout of the final
state of the system (Fig. 4c, the maximum accuracy condi-
tion) has little impact on these results, except to further
enhance the advantage of the attractor model (which has
more undecided trials) over the perfect integrator.

Reduction of noise helps the attractor model less, because
noise actually drives the stochastic transitions constituting a
decision. Thus in Fig. 4b at the lowest input gains, the
barrier model is more accurate if more noise is internal, so
not scaled away (compare Fig. 4b green trace near zero gain

a b

Fig. 3 System with greatest accuracy depends on threshold. A system
with a positive potential barrier (a stable point attractor) is more accurate
when the threshold rate is low, while an inverted potential producing an
unstable fixed point is more accurate when the threshold is high. The
perfect integrator (linear, no potential barrier) is optimal at intermediate
thresholds. a With low noise, D=100Hz2s−1, a low threshold (<20Hz) is
optimal, while b with moderate noise, D=900Hz2s−1 a higher threshold

(>20Hz) is optimal. a, b Blue dashed curvewith crosses: linear integrator,
b=0. Green solid curve with open circles: nonlinear attractor model with
barrier, a) b=1, b) b=10. a Dotted red curve with asterisks: unstable
nonlinear model, b=−1. a, b Regions where nonlinear models are more
accurate than the linear integrator are shaded yellow. Results are from 1D
system with sextic potential and fixed thresholds with no other readout
mechanism, so “undecided trials” are present
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with the same trace in Fig. 4a). Such a seemingly paradox-
ical result of enhanced accuracy with decreased signal to
noise ratio, seen also in our spiking-neuron simulations of
the task (Miller and Katz 2010), is actually a reliable phe-
nomenon, akin to stochastic resonance, often observed in
models with a stable initial state (Gammaitoni and Hänggi
1998; Gluckman et al. 1998; McDonnell and Abbott 2009;
Miller and Katz 2010).

For the low noise system, optimal accuracy for the integra-
tor (Fig. 4d–f, dashed blue traces) is below that of the attractor
model with a barrier (Fig. 4d–f, solid green traces) if internal
noise is>50 % of the total, though differences between the
two are miniscule. In the standard system (i. e. with unit gain)
with low noise, accuracy is limited by the number of
undecided trials, and thus improves as gains increase from
unity. The improvement is larger if the increase in signal does
not come with a concomitant increase in noise, which is the
case when the dominant contribution to the noise is internal
(compare Fig. 4d and e). If the “undecided” trials are settled
based on the sign of the decision variable (i.e. the maximum
accuracy condition, Fig. 4f) then accuracy increases consider-
ably in all systems, but more so for the attractor model, such

that it’s accuracy matches the perfect integrator even if only
25% of the noise is internal. Since performance in the attractor
system (under standard conditions) was more limited by
undecided trials than was performance of the perfect integra-
tor, in all cases the attractor system benefits more by any
increase above unit gain (Fig. 4d–f, solid green traces), so
the already-observed advantage over the perfect integrator
only increases (Fig. 4d).

In summary, if a noise-free circuit were possible, the
integrator could produce optimal accuracy, but if even a
relatively small fraction (≥ 15 % of D=900Hz2s−1) of the
total noise in the decision-making circuitry is internal rather
than arising from inputs, non-integrators achieve greater
accuracy than the perfect integrator.

3.1.4 Decision-making accuracy in models with an urgency-
gating signal

An urgency-gating signal is a method for speeding up the
likelihood of a response as time passes, and for settling other-
wise undecided trials. It has been suggested to explain behav-
ioral data in some tasks (Cisek et al. 2009), and has been further
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Fig. 4 Fixed gain modulation, by scaling up or down the inputs,
boosts accuracy. If the decision-making threshold is fixed, then re-
sponse accuracy can be improved by scaling the input signal and input
noise through gain modulation. a–c With moderate total noise (D=
900Hz2s−1, equivalent to 3Hz spontaneous activity) in the control
system at a gain of unity, accuracy can be increased by reducing the
gain (decreasing signal and noise) which slows response times. Highest
accuracy is achieved with a point attractor system (green curve) when
50 % or 25 % of the total noise arises from the internal decision-
making circuitry. Optimal gain is below unity (to reduce signal and
noise) unless more than 50 % of the noise is internal. d–f With low
total noise (D=100Hz2s−1, equivalent to 1Hz spontaneous activity) in
the control system at a gain of unity, accuracy can be increased by

increasing the gain, which speeds up responses. Highest accuracy is
achieved with a stable attractor system (green, solid curve) if 50 % of
the total noise arises from the internal decision-making circuitry in d),
but not 25 % in e-f). a, d 50 % of noise is internal, 50 % from stimulus.
b-c, e-f 25 % of noise is internal, 75 % from stimulus. a-b, d-e
“Undecided” trials are treated as guesses, ½ correct. c, f) Outcome of
“undecided” trials determined by final sign of the decision variable
(maximum accuracy). a–f Green solid curve: accuracy for the
nonlinear point-attractor model with a barrier, a–c) b=5, d–f) b=1.
a–f) Blue dashed curve: accuracy for the perfect integrator from the
linear model with no barrier, b=0. Shaded yellow: parameter region
where the particular barrier model is more accurate. Black dashed
horizontal line: optimal accuracy of attractor-based model
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suggested to allow greater accuracy in decision-making tasks
than a true perfect integrator (Standage et al. 2011). The
urgency-gating signal can be instantiated as a ramping multi-
plicative gain in the inputs, or a lowering of threshold with
time, or a reduction of the stability of the initial, undecided state
with time. We investigate and provide results for all three
alternatives (and justify the third one, since it is novel).

In nonlinear models with an initial point attractor and
barrier the initial, undecided state will be destabilized by a
ramping input current (Eqs. (21–22)), increasing the likeli-
hood of response. Moreover, such a ramping input current
can multiplicatively increase the effect of any input bias
(Eqs. (21–22)), thus providing a particularly simple biolog-
ical implementation of urgency-gating. Such an unbiased
ramping input current has no effect on rate-differences in a
linear, perfect integrator, but to ensure a fair comparison, we
added equivalent urgency signals to every single-variable
model (see Methods). To summarize, we implement the
urgency signal, equally for all types of barrier, either as a
linearly increasing term, which destabilizes the initial spon-
taneous state (Fig. 5, dot-dashed green curve), or as a
linearly decreasing threshold, which reaches zero by the
end of the stimulus (Fig. 5, dashed red traces).

We find that optimal accuracy (Fig. 5 black asterisks on
dot-dashed green traces) is achieved when nonlinearity pro-
vides a diffusive barrier such that the urgency-gating signal
does not render the initial attractor state unstable until near
the end of the stimulus duration. In all simulation condi-
tions, an appropriate combination of barrier height and
urgency-gating signal could be found that produced better

accuracy than a perfect integrator (Fig. 5, y-intercepts), even
one with linearly decreasing thresholds (Fig. 5, dashed red).
Similarly, when we parametrically varied the level of the
static threshold (as in Fig. 3), we ubiquitously found that
some model with a positive nonlinearity to produce an
initial barrier, combined with an urgency-gating signal, al-
ways produced greatest accuracy (data not shown).

In fact, a nonlinear, temporally varying system could
perform better than the perfect integrator even when thresh-
olds were specifically chosen to be optimal for the integrator
and unchanged thereafter. In a system with high noise
(D=2500Hz2s−1, corresponding to 5Hz spontaneous activi-
ty), for instance, the optimal threshold for the perfect inte-
grator was found at a rate higher than that of the high-rate
attractor states of the sextic potential. Such a rate prevented
decisions from being made (and producing chance perfor-
mance) given moderate nonlinearity. However, an alterna-
tive potential with attractor states at rD=±80Hz enabled a
nonlinear system to reach the high threshold of 60Hz and
perform better than the perfect integrator.

Our main result—optimal accuracy arises from a combina-
tion of an attractor model with an urgency-gating signal—was
maintainedwhenwe parametrically varied the fixed input gain
(Fig. 6, solid green curves). In Fig. 6 we present the results for
the low-noise system (the only case where the perfect integra-
tor was more accurate than the attractor model in our standard
conditions), and find than with the inclusion of an urgency-
gating signal an attractor model (solid green curve) produces
optimal accuracy, regardless of whether the signal is
implemented by destabilizing the initial state (Fig. 6a–c) or

a b

Fig. 5 Addition of a ramping (urgency) signal boosts optimal accuracy
and favors increased barrier height. a For the low noise system (D=
100Hz2s−1) the urgency gating signal boosts performance for both linear
integrator (b=0) and point attractor models (b>0), though more so for
larger barriers, such that optimal accuracy arises in a model with a barrier
(black asterix, b=1). An urgency signal that destabilizes the initial state
(dot-dashed, green trace, Gu(t)=1.5t) can produce greater accuracy than
one that causes a reduction in thresholds (dashed red trace). b For the
moderate noise system D=900Hz2s−1, a destabilizing urgency gating
signal (dot-dashed green trace, Gu(t)=5t) reduces accuracy for the linear

integrator (b=0) but boosts accuracy for models with a large barrier,
increasing optimal accuracy and increasing the optimal barrier height
(black asterix, b=18). An urgency signal which acts to reduce thresholds
(dashed red trace) is less accurate, but again its optimal accuracy is for an
attractor model with a barrier. Both forms of urgency signal cause
threshold to be reached in over 99.9 % of trials for linear integrators
and for nonlinear barrier systems, so “undecided trials” are lost. a–b Blue
solid curve: no urgency signal. Red dashed curve: urgency signal by
linearly ramping reduction of thresholds to zero.Green dot-dashed curve:
urgency signal by slowly increasing the destabilization of the initial state
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by linearly decreasing thresholds to zero (Fig. 6d–f), and
regardless of whether the system is dominated by internal
noise (Fig. 6a,d) or by input noise (Fig. 6c,f).

3.1.5 Decision-making accuracy when responses are forced

The long-standing analytic proof (Wald 1947; Wald and
Wolfowitz 1948) of perfect integration as the optimal pro-
cess for making a two-alternative forced choice for any
fixed time interval (and conversely the process requiring
the minimum time to reach a given accuracy) assumes either
an unlimited duration with fixed thresholds, or an absence of
threshold combined with a readout that perfectly responds to
any difference in total accumulation of inputs.

A biological readout mechanism, however, is unlikely to
reproduce such perfect analytic results. More likely is some-
thing resembling the mechanisms that we instantiate above,
or the one below, wherein we force a response in such trials
by rendering the undecided state of low firing rate difference
unstable—by “forcing” a response to threshold. Such insta-
bility would arise in practice via a strong global input
current in any nonlinear model.

A forcing term applied in the final 100 ms of the trial
(instantiated as a large, negative quadratic addition to the
effective potential, see Methods) led to qualitatively the
same result as an urgency-gating signal, in that it improved

accuracy of nonlinear models more than perfect integrators.
The fraction of undecided trials fell to below 10−8 in all
cases—a change favoring attractor models, which otherwise
generated more undecided trials. Even in the low noise case,
if 50 % of the noise is internal then at an optimal level of
gain, an attractor model with a barrier (b=1) is more accu-
rate than the perfect integrator.

It might appear surprising that such a forcing term would
produce better than chance responses from undecided trials
in a barrier model—after all, while the system remains in its
initial stable state, it has not integrated any of the prior input.
However, the boost in accuracy provided by the forcing
term can be understood from the shape of the effective
potential prior to addition of the forcing term (Fig. 7a1–
c1). The biasing current causes the stable “undecided” state
to be offset from zero on the side of correct responses. Thus,
when a response is forced, the otherwise undecided re-
sponses will more likely become correct responses than
errors. This shift in the stable fixed point—which marks
the peaks of the probability distribution for “undecided”
trials—also explains why perfect readout improves perfor-
mance for the barrier model beyond chance guessing, in
Figs. 2 and 4c, f. Since the barrier model typically has more
undecided responses without a forcing term, then the benefit
of a forcing term can favor the barrier model more than a
perfect integrator.
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Fig. 6 The nonlinear attractor-based model with a ramping (urgency)
signal produces optimal accuracy even in low-noise systems. a-c
Ramping signal, Gu(t)=2s

−1, acts to destabilize the symmetric, spontane-
ous state. d–fRamping signal causes a dynamic threshold reduction (from
20Hz at t=0, linearly to zero by stimulus offset at t=2s) with Gu(t)=0. a,
d 75 % of the noise is internal, 25 % of noise scales with the stimulus as a
function of gain. b, e 50% of noise is internal, 50% is input-dependent. c,
f 25% of noise is internal, 75 % is input-dependent. Linear integrator, b=
0. The threshold reduction used in d–f) eliminates undecided trials and

“guessing” but the results are qualitatively identical to the use of the
urgency signal. a–f Both methods for reducing the numbers of undecided
trials boost performance more for the barrier model than the linear
integrator (compare b–c and e–f with Fig. 4d–f). Green solid curve:
accuracy for the nonlinear point-attractor model with a barrier, t=2. Blue
dashed curve: accuracy for the perfect integrator from the linear model
with no barrier, t=0. Shaded yellow: parameter region where the partic-
ular barrier model is more accurate. Black dashed horizontal line: optimal
accuracy of attractor-based model
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3.1.6 Explaining the above: the role of response time
distributions for non-integrators and integrators

Given that the perfect integrator is often described to pro-
vide the optimal trade-off between mean reaction time and
accuracy, it is quite reasonable to ask why we observe
higher accuracy with a nonlinear system combined with an
urgency-gating signal in all circumstances. The answer to
this question can be found in examinations of simulations
with a range of input currents and no time limit for decision-
making. For both the perfect integrator and the nonlinear
system, accuracy increased and reaction time decreased with
increased input bias (input bias being the difference in input
currents, representing coherence in motion tasks). At high
input bias the nonlinear model with urgency-gating is more
accurate than the linear integrator, although reaction time is
slower; this situation reverses at low input bias, when the
slower input-induced dynamics allow more time for the
urgency-gating signal to effect a response. Figure 8a sum-
marizes these data, showing that there is no input bias for
which the nonlinear system produces both higher accuracy
(Fig. 8a, dashed blue trace) and faster mean response times
(Fig. 8a, green trace) than the perfect integrator. On the

contrary, as expected, for all combinations of nonlinear
system assessed, we found a small range of inputs for which
the perfect integrator did produce more correct responses
with a faster reaction time—just as predicted by standard
theory.

Any apparent contradiction with our prior results is re-
solved in Fig. 8b, which shows the cumulative fraction of
correct responses for two systems with the same mean
response times. Since the shapes of the distribution of re-
sponse times differ between nonlinear and integrator sys-
tems, there is a range of response times for which the
nonlinear system with urgency gating produces more correct
responses than the perfect integrator, even if eventually,
once all responses are produced and counted, the perfect
integrator is more accurate. This effect arises because the
response time distribution of the perfect integrator has great-
er skew—for the same mean response time the integrator
has more very slow responses—a simple and direct conse-
quence of the urgency signal ensuring responses are timely.
Thus, it is the limited stimulus duration with fixed response
time that allowed us to recognize nonlinear systems with an
urgency signal to have consistently greater accuracy than the
perfect integrator (Fig. 8b).

a1 b1 c1

a2 b2 c2

d

Fig. 7 Expectation of faster or slower error responses depends on
curvature of the nonlinear 1D model. a1), b1), c1) Effective potentials
include a bias current, which produces correct responses at positive
rate-difference rD. a1) Fixed point of the unstable potential (where drD/
dt=0) is shifted left of the origin, so crossed on error but not correct
trials, leading to slower error responses in a2. b1) Linear potential has
constant gradient, leading to equal shapes of correct and error response
distributions in b2. c1) Stable fixed point of the potential with a barrier
is shifted to the right, so crossed on correct, but not error trials, leading
to slower correct responses compared to errors in c2. a2), b2, c2) The
corresponding response time distributions (scaled to a peak of 1, for
easy comparison of the shapes—the number of errors is so much fewer

than number of correct responses that shapes of the original distribu-
tions can not be visibly compared). Green solid curves: scaled distri-
bution of correct response times. Red dashed curves: scaled
distribution of error response times. a1), a2) b=−1. b1), b2) b=0.
c1), c2) b=1. D Summary of the difference in mean response times
as a function of quadratic curvature of the effective potential, or the
stability of the initial fixed point (negative curvature is unstable,
positive curvature is stable, zero curvature is marginally stable and
equivalent to an integrator). Systems with an unstable fixed point
produce slower errors, while systems with a stable fixed point produce
faster errors. Simulations contained no fixed time limit, so a threshold
was always reached
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3.1.7 Rate of accumulation of reward in the absence of a time
limit

By limiting stimulus duration and response time, one neces-
sarily affects the number of rewards that can be delivered (and
achieved) within a particular length session. This variable is
commonly known as the “reward rate.” Optimization of per-
formance in decision-making tasks is the same as maximiza-
tion of reward rate. Manipulation of the maximum achievable
reward rate also has an impact on the optimal model, which
we explore below.

In decision-making tasks with no fixed response time, the
maximum achievable reward rate can be manipulated by
varying the inter-trial interval (ITI), because the reward rate
is equal to the probability of being correct (the accuracy)
divided by the total time per trial (mean response time plus
ITI) (Swensson 1972; Balci et al. 2011). The ITI determines
where one should operate in the speed-accuracy tradeoff.
When the ITI is long compared to the decision-making time,
it is more important to take the time to be accurate, as each
error is relatively costly; if the ITI is short, meanwhile, it can
be worth making more errors, as the increase in the rate of
trials initiated in a given periodmay compensate for the errors.
Thus, when measuring reward rate in the absence of any
constraints on stimulus duration or response time, an unstable,
fast but error-prone system is optimal when the ITI is short
(Fig. 9a, solid red trace), whereas the more accurate but slower
attractor system is optimal when the ITI is long (Fig. 9a,
dashed blue trace). The perfect integrator, meanwhile, is opti-
mal at just a single, specific value of intermediate ITI (in this
case approximately 5 s—Fig. 9a, dot-dashed green trace).

For all systems studied in this situation with no fixed time
limit, an optimal reward rate was achieved without an ur-
gency signal. The primary consequence of an urgency-
gating signal was to increase the barrier height correspond-
ing to the maximum reward rate (i.e. shifted the peaks of
curves in Fig. 9a to the right). However, the overall maxi-
mum reward rate was slightly reduced in these cases (data
not shown). This result can be understood if the urgency-
gating signal is characterized as a way to ensure a response
in a given time window, so the signal is of value when
stimulus duration or the time window for response is fixed.

The results of Fig. 9a were all produced with a fixed
static threshold. Given our results in Figs. 3 and 8, as well as
longstanding theoretical proofs (Wald 1947; Wald and
Wolfowitz 1948), one might expect that for any particular
fixed level of input an optimal threshold can be chosen for
the integrator so that its rate of reward accumulation is
greater than that of any other system. Indeed, this is the
case: we show two examples in Fig. 9b–c, in which, with a
15 s ITI, the perfect linear integrator can be made to
outperform the barrier model. Figure 9b demonstrates re-
sults for the same signal used in Fig. 9a, where the barrier
model accumulates reward more rapidly at a threshold of
20Hz, because the integrators optimal threshold is much
higher, at 35Hz. However, it is worth pointing out that with
stronger input bias (just as with reduced ITI) the optimal
threshold is lower for all systems. In fact the optimal thresh-
old shifts more with changes in input for the linear perfect
integrator than it does for the barrier model (compare Fig. 9b
with Fig. 9c). Thus we find that even though the perfect
integrator performs better when both systems are optimized

a b

Fig. 8 Mean response time or accuracy, but not both, can be improved
with a nonlinear system and urgency-gating signal. a Difference in
accuracy (blue) and difference in mean response time in units of seconds
(green) between the nonlinear system with urgency-gating signal (NL +
Urgency, which has discrete attractor states after stimulus onset at low
input bias), and the perfect integrator as a function of input bias. b
Difference in cumulative distribution of correct responses over the course
of the stimulus presentation with a fixed input bias of 58 (black asterix in
a), where mean response times are approximately equal, but performance
is slightly higher with the perfect integrator. Note the middle epoch

(shaded yellow) denoting the range of times for which the nonlinear
system has produced more correct responses. Thus the nonlinear system
with urgency-gating signal can produce better performance for fixed
stimulus durations within this time interval. a–b All curves are with
moderate noise,D=900Hz2s−1 and response threshold, θ=20. The perfect
integrator is linear with b=0 and GU(t)=0 while the system with discrete
attractors is nonlinear with a barrier given by b=5 and has an added
urgency-gating signal of GU(t)=7.5t. In order to obtain the full response
time distribution, stimulus duration was not limited, so threshold was
always reached
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for a given input and ITI, under many changes in the task—
such as with a new input strength—one can easily find that
the barrier model performs better than the perfect integrator
at the previously optimized thresholds (green asterisks are
higher than green circles in both Fig. 9b and c). Thus, in a
laboratory setting with over-trained animals, where the in-
puts and task design have been learned over weeks or
months, the integrator model will likely be optimal; in a
natural environment however, in which the typical strength
and frequency of an input may not be known a priori, the
barrier model will likely be optimal.

3.2 Extending our results to two-variable models

All of the above results made use of a model with a one-
dimensional (1D) effective potential. To extend and validate
these results, we also simulated the full two-variable system,
using a firing-rate curve that could range from linear (α=0) to
cubic (α=1) (Fig. 10a). In so doing, wewere able tomap from a
perfect integrator to an attractor-based systemwith a fixed point
at the origin. At the broadest level, the results of these latter
simulations are simple to describe: the two-variable system
recapitulates the results of the 1D system (i. e., demonstrating
the frequent sub-optimality of the perfect integrator).

3.2.1 Advantages of the two-variable model

The full two-variable model, while more computationally in-
tensive, provided at least 3 advantages over the single variable
model: First, use of the 2-variable system allowed us to directly
relate the level of noise in the system to the range of sponta-
neous firing rates prior to stimulus presentation, demonstrating
that the low noise and medium noise simulations used here
correspond to approximate levels of 1Hz or 3Hz spontaneous
activity respectively (see Appendix D); second, it allowed us to
test the dependence of our main conclusions on whether fixed
thresholds were separate for each group (i.e. if either r1 or r2
reach a threshold, a situation akin to competing accumulator
models of decision-making or race models) or based on the
difference in firing rates (i.e. if rD=r1−r2 reaches a threshold,
as occurs in the 1D system and the drift diffusion model); third,
and arguably of greatest importance, it allowed us to relax
constraints needed in the 1-dimensional system to ensure that
the difference in firing rates did not depend on the sum of rates
(see Requirements for an Effective Potential in Appendix B)—
in particular the requirement ε=(WS−Wx)=0 that led to Eqs.
(2) and (20), an essential condition for a single-variable
nonlinear model—and thus to study the robustness of linear
and nonlinear systems to mistuning of parameters (Fig. 11).

a b

c

Fig. 9 Optimal performance, measured as mean reward rate, depends on
the inter-trial interval, the stimulus bias and threshold rate. a In the
absence of a time limit for decisions, so threshold is always reached,
reward rate is maximized with an unstable system (negative quadratic
curvature), which forces faster, less-accurate responses is the inter-trial
interval (ITI) is low (e.g. 2 s, red curve) but is maximized with a stable
point attractor (positive curvature, indicating a barrier) if slower responses
are less penalized due to a long inter-trial interval (e.g. 15 s, blue curve). A
perfect integrator, exemplified by the linear system (curvature=0, vertical
dashed line) is optimal at a single, specific inter-trial interval, slightly less
than 5 s (green line). All curves are with D=400Hz2s−1, with stimulus
bias, iD=20 and with threshold, θ=20Hz. Red solid curve: ITI=2 s.Green

dot-dashed curve: ITI=5 s. Blue dashed curve: ITI=15 s. The absence of
time limit ensures an absence of “undecided” trials. b, c Reward rate with
an ITI of 15 s for the perfect integrator (blue solid curve) and a barrier
model (red dashed curve) as a function of static threshold. b Standard
stimulus bias, iD=20. c Large stimulus bias, iD=50, leads to lower value
for the optimal threshold rate. b, c Blue solid curve, linear integrator with
a=0; red dashed curve, nonlinear model with a=3; black open circle,
performance of linear integrator when threshold is optimal; black asterisk,
performance of nonlinear model when threshold is optimal; green open
circle, performance of linear integrator when threshold is optimal for the
alternative stimulus; green asterisk, performance of nonlinear model
when threshold is optimal for the other stimulus
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a b c

Fig. 10 Models for a 2-variable decision-making from linear, perfect
integrator to cubic, nonlinear attractor. a The parameter a, dictates the
degree of nonlinearity, by adding a cubic term to the piece-wise linear
portion of the firing-rate curve. b, c The steady state probability
distribution of the pair of firing rates in the absence of input for the
linear perfect integrator in b and the cubic nonlinear model in c.
Spontaneous rates are constrained in the 2D system (unlike the perfect
integrator in 1D) because of the threshold nonlinearity at zero rate

(firing rates can not be negative, so noise-driven drift is constrained). b
For the linear system (perfect integrator) for a given sum of the two
rates, the probability density is independent of the difference in firing
rates, whereas c) the nonlinear system constrains the difference in
firing rates to produce elliptical contours of constant probability. Re-
sults are with D′=450Hz2s−1, equivalent to D=900Hz2s−1 in the 1D
system. Steady state distributions are shown, so no time-limit is
included

a b

c d

Fig. 11 Robustness to mistuning increases with nonlinearity and an
urgency-gating signal in 2D system. a Linear system (a=0, blue
dashed curve) is a perfect integrator with balanced cross-inhibition
(WX=0.5 where it outperforms the nonlinear system (green solid
curve). With increased cross-inhibition (reducing stability) the
nonlinear system (which enhances stability of the spontaneous state)
is more accurate than the linear system. Note that in both cases,
accuracy of the most optimal system (peaks of curves) exceeds that
of the perfect integrator (linear,WX=0.5). b Urgency-gating is included
as a multiplicative gain term (max=1, leading to an eventual doubling
of stimulus and 4-fold increase in). The ramping multiplicative gain
improves performance of the linear system but the nonlinear system
with an initial barrier has the higher optimal accuracy. c Urgency-
gating (max=0.1) is included by an additional unbiased ramping
current, with decision-threshold set at a fixed rate-difference (|r1−r2|

=20Hz). Performance of the linear system deteriorates rapidly with
imperfect tuning, and it is unaffected by an urgency-gating signal. The
nonlinear system with attractors is more robust to a decrease in cross-
inhibition, where its performance is significantly boosted by the urgen-
cy-gating signal (compare with a). d Urgency-gating included exactly
as in c) but thresholds are at fixed individual population rates (r1=20Hz
or r2=20Hz). a–d Dashed blue curve with asterisks: linear system with
. Solid green curve with open circles: nonlinear attractor-based system
with a=0.1. Yellow shaded area indicates the range of parameters
where the nonlinear system outperforms the linear system (which pro-
duces a perfect integrator at WX=0.5). Low-noise, D′=50Hz

2s−1

(equivalent to D=100Hz2s−1 in the 1D system and 1Hz spontaneous
activity) with a fixed duration of 2 s. Panels a-c) include the effect of
“undecided” trials, while the urgency signals in panel d) ensure thresh-
old is reached on over 99.9 % of trials
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3.2.2 Robustness to parameter mistuning

Perfect integration requires perfect tuning of parameters (δ=
0 in Eq. (9)). Since such perfect tuning is unlikely in a real
biological system (a fact that is widely discussed in the liter-
ature (Renart et al. 2003; Meyer-Baese et al. 2009; Bouvrie
and Slotine 2011)), it is important to assess how accuracy of
our various models—the linear system, a static nonlinear
system, and a nonlinear system combined with an urgency-
gating signal—deteriorate with mistuning. The answer, as
shown in Fig. 11, is clear: across a variation of ±10 % in the
level of cross-inhibition, the nonlinear system with an
urgency-gating signal (Fig. 11, solid green traces)—instanti-
ated as either a ramping input current (Fig. 11c–d) or a
ramping input gain (Fig. 11b)—was most robust than a linear
integrator, and produced the highest level of accuracy across
the parameter range.

3.2.3 Thresholds of single-group firing rate versus firing
rate difference

The two-variable system allows us to assess whether a model
with separate fixed thresholds for each group (i.e. if either r1
or r2 reach a threshold, a situation akin to competing accumu-
lator models of decision-making or race models) performs
differently from a system with a threshold based on the
difference in firing rates (i.e. if rD=r1−r2 reaches a threshold,
as occurs in the 1D system and the drift diffusion model). It
might be reasonable to expect such differences, because an
input current could conceivably raise the rates of two cell-
groups nearly equally, failing to appreciably increase the
difference in their firing rates, but causing a response based
on reaching a single group’s individual firing rate threshold.

In reality, however, basing the decision-making threshold
on the individual firing rate of a group of neurons, rather
than the firing-rate difference between groups, introduced
few qualitative differences in accuracy of nonlinear systems,
although in the presence of either an urgency-gating
(ramping) input or an input forcing a response the type of
threshold did matter for the accuracy of a linear system.
Since adding an additional, symmetric input current has no
effect on the difference in firing rates of a linear system
(unlike the nonlinear system), such an urgency-gating or
forcing current is ineffective in the linear system if the
threshold is based on difference in firing rate. However,
when the threshold is an absolute firing rate, the additional
input current does indeed hasten a decision in the linear
system, boosting accuracy. Such a situation corresponds to
a monotonic decrease in threshold with time for the 1D
linear model—a manipulation that favored the attractor
model over the perfect integrator. Indeed, we found that
accuracy in a 2D linear system with an urgency-gating
current and individual rate thresholds (Fig. 11d) resembles

that of a linear system with urgency gating via input gain
and rate-difference thresholds (shown in Fig. 11b, dashed
blue trace) and was similarly bested by the nonlinear attrac-
tor model (Fig. 11d, solid green trace).

3.2.4 Forcing a response in the 2-variable system

Given the finite time window for making a response, we
found on many trials that threshold was not reached within
the response window. We treated such trials as driving a
random response. However, the perfect integrator always
maximized the probability that r1>r2 for a fixed duration
of stimulus with I1>I2, so by treating trials with r1>r2 as
chance when threshold was not reached, it could be argued
that we may have unfairly disadvantaged this model. To
examine this possibility, we added an input to the system
to force a response based on the final rates, expecting that
such a forced response could favor the integrator in all
situations.

To achieve this, we added a “forcing current” in the last
100 ms of a 2-s stimulus period. We simulated the best-case
scenario for the perfect integrator using the low-noise case,
for which it produced more undecided responses than the
optimal nonlinear urgency-gating model (and thus could
benefit most from the “forcing” of undecided responses).

In the case where the threshold was one of rate-
difference, a forcing-current, like an urgency-gating signal
has no effect in the linear system (the perfect integrator),
since the rate-difference is independent of the sum of input
currents. On the other hand, in the nonlinear system, such a
forcing-term improved optimal accuracy (data not shown)
by reducing the number of undecided trials.

To further favor the perfect integrator, we used fixed
population-rate thresholds—i.e. a decision is made depending
whether r1 or r2 first reaches threshold, irrespective of mag-
nitude of the difference, r1−r2. We found that adding a forcing
current with such thresholds improved accuracy considerably,
to 99.89 % correct for the perfect integrator (linear system
with α=0). However, even in this situation—even when ef-
forts were made to maximally enhance performance of the
perfect integrator model—accuracy was higher in the stable
attractor system with a nonlinearity (α=0.1), which produced
99.95 % correct responses even in the absence of an urgency-
gating signal. In summary, while both models were almost
perfectly accurate, the linear perfect integrator, under optimal
circumstances, produced twice as many errors as the nonlinear
system with diffusive barriers.

3.3 Comparison of models with behavioral
and electrophysiological data

While we have shown that attractor models can be more accu-
rate than perfect integrators, their relevance in neuroscience
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depends on whether they are supported by behavioral or elec-
trophysiological data. In this section we address this issue, both
in cases where the drift diffusion model (a perfect integrator)
has been successful, and with regard to some tasks whose
results are particularly difficult to reproduce within the frame-
work of the perfect integrator.

3.3.1 Response time distributions for correct and error trials

Attractor systems and perfect integrators give rise to notably
different response time distributions. A perfect integrator pro-
duces identically shaped distributions of response times for
error trials and correct trials, assuming that the starting point—
the state of the decision-making circuit upon stimulus onset—
is at the midpoint between the two boundaries (Ratcliff 1978;
Farkas and Fülöp 2001). Many attractor-based models (Wong
andWang 2006), meanwhile, easily produce an error-response
time distribution that peaks later than the correct-response
time distribution—a pattern that is frequently observed in
human (Luce 1986) and monkey behavioral data (Roitman
and Shadlen 2002; Mazurek et al. 2003).

In fact, we observe that error responses can in fact be
faster or slower than correct responses, depending on wheth-
er the initial state is stable or unstable at the time of response
(Fig. 7), causing trajectories to cross the fixed point of the
system on correct trials or error trials respectively. To repro-
duce such results within the perfect integrator framework
requires the addition of trial-to-trial variation in either stim-
ulus bias (for slower errors) or initial state of the system (for
faster errors) (Ratcliff and Rouder 1998).

Moreover, attractor models can therefore reproduce an-
other oft-observed feature of behavioral studies (Purcell et
al. 2010)—that of relatively slower errors switching to rel-
atively faster errors in situations where all responses are
faster (Fig. 12). This effect is achieved in the attractor
framework by altering the input gain across sessions—high
noise and input gain leads naturally to faster responses, and
thus to faster errors. With low input gain and low noise, the
urgency-gating signal reduces barriers over time until re-
sponses arise predominantly via destabilization of the initial
state, and errors are slower. Integrator models can achieve a
similar result by a reduction of threshold in tasks where
responses should be fast (Ratcliff and Rouder 1998); thus,
the two explanations could be differentiated from neural
recordings—does threshold or, alternatively, the input gain
(hence slope of activity) change as a function of the speed-
accuracy tradeoff in a task?

A curious and related phenomenon arises when strong
nonlinearity is combined with a strong urgency-gating sig-
nal. In such cases the probability of producing a “slow”
error could become greater than the probability of producing
a correct response. Because of this, performance of the
nonlinear model worsens with increased stimulus duration.

In such a regime, the optimal strategy requires switching
responses—as has been observed to occur in paradigms
sensitive to when a subject deliberately changes his/her
mind (Resulaj et al. 2009)—if threshold is not yet reached
by the time when the probability distributions for correct
and error responses cross over.

3.3.2 Stimulus reversal

If the strong stimulus is reversed at the midpoint of the total
stimulus presentation (Fig. 13a) during a situation in which
the presentation intervals are short, our simulations using
nonlinear models predicts a range of stimulus duration for
which the second, reversed stimulus should dominate
(Fig. 13c) the decision process, with increasing dominance
as the total presentation time increases. This effect has been
observed in behavioral data and termed paradoxical integra-
tion (Rüter et al. 2012), for the reason that it is not repro-
ducible in a standard, perfect integrator.

An attractor system with an urgency-gating signal repro-
duces this effect naturally (Fig. 13c), as responses can be
dominated by the later signal when any barrier is lower or
the initial state is rendered unstable. Paradoxical integration
can also occasionally arise in an attractor system with barriers
and no urgency-gating signal (Fig. 13b), because errors are
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Fig. 12 In an attractor model with urgency gating, gain modulation
can reproduce the observed shift from slower to faster errors as re-
sponse time decreases. a Mean response times on error trials and
correct trials both decrease as input gain increases in an attractor model
(b=2) with low noise (D=100Hz2s−1) and an urgency gating signal
(GU(t)=t/15). b Ratio of mean error response times to correct response
times for the parameters of (a). a–b No time limit was used for these
simulations, so threshold was always reached
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relatively fast in a barrier system, such that incorrect responses
during the first stimulus (which favor the second stimulus)
occur relatively frequently. However, the conditions under
which our single-stage system (with or without urgency-
gating) emphasizes the second stimulus over the first are not
conditions under which the first stimulus alone produces high
response accuracy. Thus, while an attractor-based model can
explain more of the data than a single integrator, the two-stage
model suggested by others (Rüter et al. 2012) remains essen-
tial to explain the full range of consecutive-stimulus data. In
the two-stage model, a first circuit receives direct stimulus-
dependent inputs during stimulus presentation, while a second

circuit, which implements the drift-diffusion model (Ratcliff
1978) receives inputs, commencing at stimulus offset, from
the buffered final activity of the first circuit. It is noteworthy
that in the proposed two-stage decision-making system, the
first stage must be an attractor-based “leaky integrator” rather
than a perfect integrator (Rüter et al. 2012).

3.3.3 Bimodal response time distributions in a compelled
response task reproduced by a non-integrator

An interesting result that can be used to further test our
competing models of decision making is the bimodality in
the distribution of correct response times observed in vivo in
a compelled saccade task (Salinas et al. 2010; Shankar et al.
2011). In this task, a signal cues the monkey to make its
response even before the stimulus information became
available. We simulate such a protocol with a two-variable
model, by commencing the diffusion process (and any
urgency-gating signal if present) before adding the bias term
favoring a particular response (Fig. 14a).

It proved difficult (though not impossible) to produce this
sort of bimodal distribution of response times using a tuned
linear system as a perfect integrator; such a system neces-
sarily produces a unimodal probability distribution of firing

rates. That is, given drD
dt ¼ ID tð Þ þ Dη tð Þ, the solution of the

Fokker-Planck equation isP rD; tð Þ ¼ 1ffiffiffiffiffiffiffi
2πDt

p exp − rD−rD tð Þ½ �2
2Dt

n o
where 〈rD(t)〉= ∫0tID(t ′)dt ′, a unimodal Gaussian. Only when
the input to be integrated was scaled in a highly nonlinear
manner as a function of time could bimodal response time
distributions be observed with a linear model (Broderick et
al. 2009); when we added a forcing term to all of our
decision-making models, for example, a second peak in
response times arose following onset of the forcing current.
However, a sigmoidal time-dependence of the input gain (a
fairly severe constraint) was essential for this result; without
it, all of our simulations with a perfect integrator resulted in
unimodal distributions of response times (Fig. 14b).

On the other hand, a nonlinear system naturally produces
a bimodal probability distribution (Fig. 14c) once the fixed
point at rD=0 becomes unstable (Fig. 14e). That is, any time
the symmetric input to the system (before any bias is ap-
plied) is sufficient to destabilize the symmetric fixed point
but insufficient to force a response, the bimodal probability
distribution can lead to a bimodal distribution of correct
response times. Indeed, Fig. 14c demonstrates that a
nonlinear system with an additive urgency-gating signal
reliably leads to a bimodal distribution of correct responses.

It is important to distinguish between predictions regard-
ing individual subjects’ distributions of response times and
those observed after averaging across subjects. Bimodal
group distributions (Simen et al. 2009) can be fit by mixing
two different models of decision-making, and it is

Fig. 13 Double-stimulus protocol can favor second stimulus in attrac-
tor systems. a In the protocol, the sign of stimulus bias is reversed at
the midpoint (tmax/2) of the total duration (tmax), which can vary. b
With no urgency-gating signal, GU(t)=0, the attractor model produces
a small bias toward the second stimulus. The bias increases with total
stimulus duration for small durations. Blue dashed curve = perfect
integrator, b=0. Green solid curve = triple attractor with b=11. For
both curves D=400Hz2s−1 (corresponding to2Hz spontaneous activity).
c With an urgency-gating signal, GU(t)=240 t, responses become more
likely as time progresses, so for the triple attractor model (green, b=25)
the second stimulus strongly dominates the response, as seen in be-
havioral data (Silver et al. 2012). The linear, integrator model retains
dominance of the first stimulus (unlike behavioral data). Blue dashed
curve = perfect integrator, b=0. Green solid curve = triple attractor
with b=25. For both curves D=100Hz2s−1. b-c Inputs were strong
enough for these simulations that threshold was always reached
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reasonable to assume that different models would fit behav-
ior of different subjects. However, in the compelled re-
sponse task considered here (Shankar et al. 2011), the
bimodal distribution arose from a series of trials from the
same subject. Thus, the only models that can fit the data are
those in which a single set of parameters produces such a
bimodal distribution—the nonlinear system achieves this
with much greater ease than the perfect integrator.

3.3.4 Single-trial electrophysiological data

The basic properties of simulated single-trial firing-rate trajec-
tories differed depending on whether the system was linear or
nonlinear, and on whether an urgency-gating signal was pres-
ent or absent, and thus could also be used to evaluate models.
Note, however, that this is only true for single-trial analyses—
activity averaged across trials, a la peri-stimulus time histo-
grams, may well provide an unreliable estimate of these
single-trial firing properties (see Section 1).

Introducing sufficient nonlinearity in the effective potential
reproduced the results of our prior work (Miller andKatz 2010),
in that the time for transition from half-threshold to threshold
became fast compared to both the mean time to reach half-
threshold and the trial-to-trial standard deviation in threshold
crossing times (Table 3). That is, firing rates changed suddenly
as the system hopped from one attractor to the next—changes
that occurred at slightly different times on different trials. By
contrast, the linear models produce broader transitions with less
variability across onset times than time to make the transition
itself—integrative “ramps” of activity.

These differences can be observed in Fig. 15, which com-
pares the average firing-rate trajectories (n=100 simulated tri-
als) aligned first to stimulus onset (the PSTH, Fig. 15a) and
next to the mid-point of the trajectory (Fig. 15b). The linear
perfect integrator would appear to possess a steeper slope
according to the standard PSTH, but alignment of trials to each
trajectory’s midpoint reveals the significantly sharper transition
in the model with urgency-gating signal and attractors.

An urgency-gating signal in particular enhanced the “jump-
iness” of single-trial firing trajectories in trials with late de-
cisions, because trials in which responses are later are those
with a stronger urgency-gating input, which forces a faster
shift of rates toward threshold, at the time of response. These
trends were more noticeable in simulations of the low-noise
system with D=100Hz2s−1 (Table 3) as noise fluctuations
dominated individual trajectories with higher levels of noise.

In summary, neurons in nonlinear attractor networks tend
to jump suddenly from one firing rate to another at times that
are controlled by system noise (and thus differ from trial to
trial), whereas neurons in a perfect integrator produce smooth-
ly ramping firing rate trajectories. Across-trial averages of
these processes may well be similar, and “jumpiness” of
single-trial, single-neuron spike trains is notoriously difficult

Fig. 14 Nonlinear model with an urgency-gating signal reproduces
bimodal response distributions in a compelled saccade task in the 2D
system. a In the task, the “Go” signal appears (at t=0) before any input
bias (from t=0.1s to t=0.2s). b, d Results for a perfect integrator
(linear model). c, e Results for a nonlinear, attractor model with an
urgency-gating signal. b–c Distribution of threshold-crossing times for
correct responses. d−e The probability distribution at the mid-point of
the task, immediately preceding input bias. b–e Inputs were strong
enough for these simulations that threshold was always reached

Table 3 Summary of single-trial trajectories in 1-D system. The param-
eters producing greatest accuracy under our standard conditions are found
in the rows where both a>0 and dGU/dt>0 In both cases, T1>T12: the
mean time from stimulus onset to half-threshold is significantly greater
than the time to complete the transition. The final column is the correla-
tion across trials between (time to reach half-threshold) and T12 the time
from half-threshold to threshold

D(Hz2s−1) a dGU/dt (s
−1) T1 T12 ρ

100 0 0 .75 .78 −.03

100 0 3 .75 .48* −.20*

100 3 0 1.65 .77* −.03

100 3 3 1.00 .29* −.40*

900 0 0 .42 .55 −.04

900 0 3.5 .29 .28 −.24*

900 9 0 .60 .50 .003

900 14 3.5 .58 .37* −.29*

*Denotes significantly different from perfect integrator (p < .05)
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to analyze; thus, relating the results of these models to real
data requires the simultaneous collection of multiple spike
trains, which in attractor models jump in synchrony. There
have been few such examinations thus far, but most of those
that have been presented suggest either sudden coherent
jumps (Seidemann et al. 1996; Jones et al. 2007; Ponce-
Alvarez et al. 2012) or combinations of jumps and ramps
(Bollimunta et al. 2012).

4 Discussion

Themotivation for the analyses that we have presented is three-
fold. First, there is ample justification in the literature (see
references in Section 1) to doubt that a perfect integrator is
optimal (or even desirable) for decision-making in neural cir-
cuitry under realistic environmental constraints. Second, the
necessity of fine-tuning of parameters to produce a perfect
integrator makes it reasonable to ask whether attractor-based
models might provide more robust explanations of decision-
making. Third, our analyses of neural data in gustatory cortex
during taste processing (Jones et al. 2007) suggest that de-
cisions in the taste systemmay be reached via “jumps” between
multi-neuronal attractor states rather than via continuously
varying “ramps” that are produced by an integrator.

Our results suggest that given environmental and neural
constraints, perfect integrators are less accurate and less
robust than attractor-based models. Furthermore, we have
found attractor models to be more compatible with certain
behavioral and electrophysiological data.

4.1 Accuracy of decision-making

Under a number of conditions, a perfect integrator proves to be
less optimal for producing two-alternative forced choice

Furthermore, within the fixed response time paradigm,
model mechanisms for ensuring timely responses, such as
the inclusion of a forcing or an urgency-gating signal—an
addition that is directly supported by psychophysical (Cisek
et al. 2009) and electrophysiological (Leon and Shadlen
2003; Janssen and Shadlen 2005; Genovesio et al. 2006;
Mita et al. 2009; Churchland et al. 2011) evidence—further
improves the advantage of the nonlinear system over a
perfect integrator. Although the forcing or urgency-gating
signal, here implemented as a temporal jump or ramping of
non-specific input, served to destabilize the baseline
undecided attractor state, under most conditions the majority
of responses were made before such destabilization was
complete. Similar effects have been observed when an ad-
aptation current was added to a model of perceptual
bistability (Moreno-Bote et al. 2007; Theodoni et al.
2011a; Theodoni et al. 2011b). Thus, in many cases, the
trajectories of neural activity under parameters producing
greatest accuracy correspond more to one of a stochastic
jump between discrete attractor states, than the gradual
ramping produced within a perfect integrator (Table 3).

a b

Fig. 15 Realignment of trajectories of the difference in firing rate reveals
sharper transitions in attractor models. a For each model, mean of 100
correct trajectories of firing-rate difference, rd(t), aligned to stimulus onset,
as in a peri-stimulus time histogram. b Mean of same 100 trajectories for

eachmodel, but with each trial realigned to the time its smoothed trajectory
reaches 15Hz. a–bDashed blue curve: linear perfect integrator, b=0,Gu(t)
=0 (accuracy = 0.708). Solid green curve: more optimal attractor model
with urgency-gating, b=0, Gu(t)=5t (accuracy = 0.738)
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decisions than a system based on transitions between attractors.
The simplest such system—three attractors, one for an initial
undecided state and one for each of the two decision states—
performs better under two general conditions. First, if the mean
time to threshold is much shorter than a fixed response time—
such as when the system is particularly noisy—the incorpora-
tion of barriers to diffusion within the attractor-based model
slows down the random walk such that the actual input bias
plays a stronger role in decision-making process than it does in
the perfect integrator model. Alternatively, in the absence of a
time limit for responses, when optimality is measured by max-
imum reward rate, then attractor-based models can perform
better than a perfect integrator if the inter-trial interval is much
longer than mean response times.



For all of the simulations presented here, the external input
signal (the bias, or stimulus strength) remained fixed at a
single value. Our results generalize to other input signals,
however, because each system is mathematically identical to
an alternative system whose inputs, threshold and standard
deviation of noise are all scaled by the same multiplicative
factor (assuming the attractor/barrier is also appropriately
scaled, see Methods). Similarly, our results are not confined
to a unique stimulus duration, because a system whose noise
variance, barrier height and stimulus strength are scaled by the
samemultiplicative factor, remains mathematically identical if
the stimulus duration is divided by that factor. Thus, ubiqui-
tously, we find that if all parameters are fixed except one, then
by adjusting that parameter so as to speed up responses, a
crossover is reached after which an attractor-based model is
more accurate than a perfect integrator. For example, in all
systems—even those with low noise or high threshold, which
favor the perfect integrator—a sufficiently strong stimulus
bias can always causes the accuracy of the perfect integrator
to be bested by the nonlinear model. This is a direct conse-
quence of the attractor model reducing the probability of an
incorrect response: the accuracy of attractor models is limited
by the slowing of correct responses to produce more
undecided trials; if mean response time is sufficiently fast
compared to stimulus duration, such limitation is avoided.
As a consequence, even without an urgency-gating signal,
for any fixed set of conditions—signal strength, noise level,
threshold value—for very long stimulus durations, any
sufficiently stable attractor model is more accurate than
a perfect integrator.

Our results do not in any way contradict well-established
theories demonstrating the optimality of the integrator under
particular conditions. When there is no time limit for a free
response, for instance, a perfect integrator is more accurate for
any given mean response time. Furthermore, even in the more
realistic situation of fixed stimulus duration, an unbounded
integrator is more accurate if the decision is determined by the
response bias (i.e., the difference in firing rates between neural
pools) at any time in the stimulus period (Wald andWolfowitz
1948). Equivalently, if inputs can be scaled without changing
the signal-to-noise ratio—i. e. assuming no internal noise—
then the optimal accuracy for the perfect integrator is highest
for any fixed duration. These conditions underlie the bulk of
models studied, and so underlie the suggestion that an inte-
grator is universally optimal.

Our study includes multiple conditions, and, we believe,
takes into account several important constraints found in
nature. First, environmental stimuli can have limited duration,
and the time available for making a response may be limited.
While using mean response time as a measure of optimality
assumes that each additional moment of delay is equally
detrimental, we also consider the opposite case, where addi-
tional delay beyond a fixed interval is highly detrimental, as

responses must be made within a given, fixed duration.
Second, the range of integration is limited by the bounds on
neural firing rates (Zhang and Bogacz 2010). Third, the neural
circuit performing the integration of noisy evidence contrib-
utes its own noise. Note that the capabilities of the perfect
integrator are limited by the combination of these last two
conditions—noise within the circuit causes random variability
in neural spiking, which is finite compared to the bounded
range of firing rates. Without such internal noise, inputs can
always be scaled (by appropriate synaptic strengths) such that
for a given input signal-to-noise ratio the integrator fairs best
(Fig. 4e). However, given such constraints, the perfect inte-
grator is rarely the optimal system in terms of rate of reward
accumulation even in the absence of a time limit for response
(Fig. 9). Long intertrial intervals favor attractor models with a
barrier (and corresponding higher accuracy but slower re-
sponses) while short intertrial intervals favor systems with
an unstable initial state upon stimulus onset (cf (Wang 2002)).

4.2 Readout of trials that do not reach threshold

One possible shortcoming of the simplest formulation of our
model was the presence of “undecided” trials—trials in
which the decision variable had not reached either threshold
by the requisite response time. While in reality this “prob-
lem” affected the attractor model with its barriers to integra-
tion more than it did the perfect integrator, the balance of the
Results section largely consisted of a consideration a num-
ber of possible methods for resolving such situations. At one
extreme, that of lowest accuracy (Fig. 2), we assumed sub-
jects would choose to guess a response without bias, if at the
end of the decision period threshold was not reached. Such
guessing could arise if the signal was too weak, or the
limited response time too short, to allow a reliable percept
to form. Even this scheme, which was relatively disadvan-
tageous for the attractor-based models, led to fewer accurate
decisions for the perfect integrator (Figs. 2 and 4).

At the other extreme, that of maximum accuracy, we
simply read out mathematically the sign of the decision
variable at the required response time for such “undecided”
trials. Such perfect readout further favored the attractor
models, increasing their advantage over the perfect integra-
tor (Figs. 2a and 4d). However, since such perfect readout is
unlikely in a biological setting, we validated our conclusions
by assessing the consequences of other more realistic
methods—in particular, a sudden, strong “forcing current”
at decision time, or alternatively several variants of urgency-
gating signal—for ensuring responses were timely.

Thus, in a subset of analyses, an added urgency-gating
signal, which linearly ramps across the stimulus-decision
interval (Ditterich 2006), improved the advantage of the
nonlinear model. Ramping peri-stimulus time histograms,
as observed in several cortical areas of primates (Romo et al.
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1999; Brody et al. 2003; Janssen and Shadlen 2005;
Genovesio et al. 2006; Mita et al. 2009; Jun et al. 2010),
could provide the biological substrate for such a signal. The
urgency-gating signal acts as an external control signal to
the circuit, shifting its fixed points and thus its function.
Such shifts may arise from the stimulus inputs themselves
(Wong and Wang 2006; Wong et al. 2007) or from an
external switching signal (Machens et al. 2005).

The urgency-gating signal can affect the decision-making
process in a number of ways, depending on the nature of the
signal and on the readout mechanism. First, the signal could
provide a multiplicative gain modulation on the inputs, or an
additive unbiased input current. Second, the decision can be
made when the difference in firing rates between two
populations of cells reaches a threshold or when a single
population’s firing rate reaches threshold. Effects were al-
most identical, except in one case to be described in the
following paragraph. In all cases, the improvement in accu-
racy of the attractor-based model by reducing undecided
trials led to it besting the perfect integrator.

With an additive urgency-gating signal, the sum of the
population-average firing rates of the two decision-making
pools increases for all types of circuits, but only for an
attractor-based model does the difference in firing rates also
increase. Thus, if a behavioral response is based on a dif-
ference in firing rates, the urgency-gating signal does not
affect the linear integrator (Fig. 11c, dashed blue curve is
identical to Fig. 11a, dashed blue curve). Beyond demon-
strating such a difference between attractors and perfect
integrators in Fig. 11b, we do not consider or include this
difference in other comparisons of their performance.
Rather, in 1D models, we either add a destabilizing term
(Fig. 5, green dot-dashed trace and Fig. 6a–c) to gradually
increase any difference in firing rates in all models (the
process that automatically arises in nonlinear 2D models)
or we monotonically decrease the response threshold, to
represent the rates of individual populations being pushed
toward fixed boundaries (Fig. 5, red dashed trace and
Fig. 6d–f). Our results did not depend on the precise mech-
anism—in all cases the attractor-based model bested the
perfect integrator.

While the ramping signal appears similar to the output of
an integrator, it does not require an integrator, as the signal
is independent of any stimulus properties and need have no
specific temporal dependence, so long as it is monotonic.
Indeed, the ramping of the urgency-gating signal could—
just like the apparent ramping of activity in the decision-
making circuitry—arise from step-like changes of activity
on individual trials (Okamoto et al. 2007; Miller and Katz
2010), so we also simulated the urgency-gating signal as a
step change of unbiased input current.

Step-like urgency-gating signals in attractor models in-
creased accuracy to levels above those generated by such

signals in the perfect integrator—in fact, an appropriately
timed and sized step-input, such as this sort of urgency gate,
could always, when combined with an attractor, produce
greater accuracy than a ramping urgency gate (data not
shown). Such step-like urgency-gating signals are equiva-
lent to our use of a forcing signal to ensure a response, but
were lower strength and with randomly-varying onset times.
The random variability in timing would lead to the appear-
ance of a gradual ramp of the inputs upon averaging across
trials. Recordings from cells providing such an urgency-
gating signal would be needed to determine whether the
input is ramping or jumping on a trial-by-trial basis.

4.3 Comparison with integrator models

Many models incorporating a nonlinearity related to the
firing rate responses of neurons serve as perfect integrators
only when the total stimulus input dwells in a narrow range,
because the quadratic term in an effective potential needs to
be precisely canceled by the total input current (e.g. to set
the term linear in rD to zero in Eq. (20)); this is true for most
line attractor models, all of which can be integrators (Seung
1996; Seung et al. 2000; Wang 2002; Miller et al. 2003).
Such fine tuning of parameters is less essential in model
integrators based on the position of an activity “bump” in
ring-attractors (Zhang 1996; Compte et al. 2000; Song and
Wang 2005) where an approximate equivalence of the long-
term mean firing rates of different cells in the circuit is
sufficient to produce the necessary continuum of fixed
points (Renart et al. 2003). Indeed, near perfect integration
has been demonstrated in such a spiking-neuron model
circuit for the encoding of head direction (Song and Wang
2005). However, when ring attractors integrate by such
continuous movement of the location of a bump of activity
(which does not require fine tuning) they do not actually
show the monotonic ramping of neural activity observed in
decision-making tasks (Shadlen and Newsome 2001;
Roitman and Shadlen 2002), nor is it clear how a signal to
be integrated by such a model could perform the necessary
reset of the “bump” to a specific, stimulus-independent ring
location. A system with stable attractors, meanwhile, re-
quires neither a reset signal nor fine-tuning to produce
highly accurate decision-making responses when the base-
line attractor remains deterministically stable upon stimulus
onset. In fact, our stable attractor models were robust to a
wide range of specific input parameters.

An animal’s goal in virtually any task is to maximize
reward. Arriving at the optimal strategy with which to do
this depends fundamentally on balancing the cost of making
errors with the cost of taking more time to respond (Simen et
al. 2006; Simen et al. 2009; Balci et al. 2011). Adjusting the
optimal speed-accuracy tradeoff by varying the inter-trial
interval (Fig. 9) again demonstrates that the perfect
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integrator is not universally the best decision-making system
(Zhang and Bogacz 2010). In sum, and when analyzing
systems under different experimental conditions, both un-
stable and attractor-based models should also be considered.

4.4 Comparison with behavioral data

Several behavioral tasks have probed the mechanisms un-
derlying decision-making with a stimulus that changes over
the course of the decision interval. For example, if the
stimulus favors one response then switches to favor the
opposite response, the resulting shift in distribution of re-
sponse times is, in one experiment, reproduced by both a
nonlinear model and a perfect integrator (Wang 2002; Huk
and Shadlen 2005; Wong et al. 2007; Cisek et al. 2009) and,
in another experiment, reproduced by a nonlinear model
with an urgency-gating signal but not by a perfect integrator
(Cisek et al. 2009). In a similar task with two successive,
opposite stimuli, responses are dominated by the second
stimulus and more so with increasing (but equal) stimulus
duration (Silver et al. 2012). Again, a perfect integrator does
not reproduce such results. Moreover, in compelled re-
sponse tasks (Shankar et al. 2011), in which the cue for a
response precedes any stimulus information, the resulting
bimodal distribution of response times is not reproduced by
a perfect integrator (unless the input gain changes sharply
over time (Broderick et al. 2009)). Yet all of these features
can be reproduced in a system with attractors and an
urgency-gating signal.

4.5 Comparison with electrophysiological data

The stable attractor and perfect integrator models make
different predictions regarding single-trial analysis of elec-
trophysiological data. A hallmark of stochastic transitions is
the large variability in the time of commencement and
completion of a transition compared to the duration of the
transition itself. The presence of an urgency-gating signal as
a gradually ramping input current, meanwhile (Eqs. (17, 18,
20)), should cause later transitions to be even more rapid
than earlier transitions, as seen in Table 3. These predictions
are contrary to the behavior of an integrator like the drift-
diffusion model with the proposed trial-to-trial variability of
input bias.

Electrophysiological analysis is complicated by the fact
that spikes of single neurons only poorly represent activity
of the network as a whole. In particular, the signature of our
results—a rapid jump in neural activity between two levels,
rather than a slow ramping—is typically lost and
unidentifiable in the noisy fluctuations of inter-spike inter-
vals of a single neuron (though see (Okamoto et al. 2007)
for single-neuron data supporting rate jumps). Moreover, the
typical approach to electrophysiological analysis—an

averaging of data across trials aligned on stimulus onset—
specifically obscures the single-trial dynamics that distin-
guish between perfect integration and attractor-based transi-
tions. Thus, it is almost impossible to test these predictions
in single-neuron data. However, the now commonplace
measurement of spike trains from multiple neurons simulta-
neously allows one to use more sophisticated analyses, such
as Hidden Markov modeling (Abeles et al. 1995; Gat et al.
1997; Jones et al. 2007), and in general to more easily
extract differences in trial-to-trial dynamics of underlying
states of network activity. At least in the realm of taste
decisions, such analyses demonstrate stochastic state transi-
tions during taste processing—transitions which arguably
culminate in a two-alternative decision of palatability
(Miller and Katz 2010). Single-trial analysis of neural ac-
tivity in other decision-making tasks is needed to determine
whether perfect integration of evidence or attractor-hopping
is the more general method for making choices.
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Appendix A: Linear models

The drift-diffusion model is an example of a perfect inte-
grator, which can be related to the activity of two groups of
neurons if the decision is based on the difference in firing
rates of the two groups, and the input to the drift-diffusion
model is the difference in inputs to the two neural groups
(termed input bias in this paper). Others have described this
connection between two-variable and single-variable
models before (Usher and McClelland 2001; Bogacz et al.
2006). In Appendix A, we repeat the substance of these
analyses using the formalism in this paper, as these methods
will allow us to map our two-variable model system with
nonlinear firing rate curves of neurons into a single-variable
effective potential in Appendices B and C.

Requirements for a perfect integrator

If the spiking rate of each neural group, i (i=1, 2) is given by
ri and the neural dynamics have a natural time constant, τ,

then τ dri
dt ¼ −ri þ f IEi ; I

I
i

� �
where f(IE, II) is the response of

the group of cells to excitatory input current, IE and inhib-
itory input current II. In the simplest models, the response
can be written as a weighted difference of input currents
f(IE, II)= f(IE−αI I)= f(I), so the firing rate response depends
on the sum of recurrent excitation, cross-inhibition and
applied current as: Ii=WSg(ri)−Wxh(rj)+ Ii

app(i=1,2; j≠ i)
where the functions g(r) and h(r) respectively determine
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the excitatory and inhibitory current as a function of pre-
synaptic firing rate.

The coupled equations for the dynamics of two groups of
cells can produce perfect integration of the difference of
inputs, if we assume that: (1) the functions g(r) and h(r)are
linear (current into a postsynaptic cell is a linear function of
presynaptic firing rate); (2) the function f(I) has a linear
range (firing rate of cells is linear in their inputs over some
range); and (3) WS and Wx are appropriately chosen (the
strengths of connections are tuned).

Deterministic rate equations can produce fixed points,
meaning no change of rate occurs when the rates of both
neural groups are at the values given by the fixed point. A
fixed point can produce a stable or unstable state depending
on whether the dynamics lead the rates to change back
toward their values at the fixed point or to move further
away following a small deviation. Stable states are often
termed attractors, because in the vicinity of the fixed point
the rates are deterministically driven to approach the fixed
point. The strength of this drive, combined with how much
the rates must change away from the fixed point to avoid
such a drive to return (termed escaping the basin of

attraction) determine how strong an input or noise fluctua-
tion must be to cause the system to change from one stable
state to another.

In the following, we show how relaxation of the linearity
assumption for f(I) leads to a stable state of “indecision” at
low total input that becomes unstable with increasing total
input. This motivates our use of attractors and our imple-
mentation of an urgency-gating signal as a ramping input
current throughout this paper.

To produce a perfect integrator, we set g(r)=h(r)=r and
assume f(I) is piece-wise linear:

f Ið Þ ¼
0 if I ≤0

I
rM

IM
if 0 < I < IM

rM if I ≥ IM

8><
>: ð5Þ

where rM is the maximum firing rate and IM is the input
current that produces maximal firing.

We define the sum and difference of the rates of the two
cell-groups as rS=r1+r2, rD=r1−r2 and the sum and differ-
ence of their inputs as IS=Ii

app+I2
app,ID=Ii

app−I2app.
Thus we can solve the coupled equations:

τ
dr1
dt

¼ −r1 þ f WSg r1ð Þ−Wxh r2ð Þ þ Iapp1

� � ¼ −r1 þ WSr1−Wxr2 þ IS þ ID
2

� �
rM

IM

τ
dr2
dt

¼ −r2 þ f WSg r2ð Þ−Wxh r1ð Þ þ Iapp2

� � ¼ −r2 þ WSr2−Wxr1 þ IS−ID
2

� �
rM

IM

ð6Þ

to obtain independent dynamics for the sum and differences
in rates (Usher and McClelland 2001; Bogacz et al. 2006):

τ
drS
dt

¼ −rS 1− WS−Wxð Þ r
M

IM

� �
þ IS

rM

IM

τ
drD
dt

¼ −rD 1− WS þWxð Þ r
M

IM

� �
þ ID

rM

IM

ð7Þ

provided the rates remain in the linear region, such that |
rD|≤rM and |rD|≤rs≤2rM− |rD|. In this paper we use τ=10ms,
on the order of the membrane time constant—a value that is
appropriate if synaptic time constants are faster and synaptic
input is not dominated by slow NMDA currents (see (Wong
and Wang 2006)).

If WS þWxð Þ ¼ IM

rM , the difference between the rates of
the two groups is directly proportional to the time-integral of
the difference in inputs, as shown by many others (Usher
and McClelland 2001; Bogacz et al. 2006). In general, if we

define a mistuning parameter, δ ¼ 1− WS þWxð Þ rM
IM
Þ and set

ε ¼ WS−Wxð Þ rM
IM

then the sum of firing rates converges to

the steady state, r∞S ¼ rM

1−ε
IS
IM
, as the equations simplify:

τ
drS
dt

¼ −rS 1−εð Þ þ rM
IS
IM

ð8Þ

and

τ
drD
dt

¼ −δrD þ ID
rM

IM
ð9Þ

Under conditions of perfect tuning, such that δ=0 then
Eq. (9) defines a perfect integrator. If δ>0 then Eq. (9)
defines a leaky integrator, as firing rates drift back to zero
in the absence of input, and reach a steady state (instead of
constantly increasing) with a fixed input bias, ID. If δ<0 then
Eq. (9) represents an unstable system.

For the model system to produce a binary response, we
assume the difference in rates must reach a predetermined
positive or negative threshold. Such a threshold must be
lower than the steady state summed firing rate, rS

∞ in these
models as perfect integration is lost once any rate drops to
zero (as happens once rD=rS).
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Appendix B: Requirements for an effective potential

If the dynamics of rD depends only on rD and not on the
sum of rates, rS (as is true for Eq. (7)) then we can ignore rS
when calculating the result of a decision-making process
whose outcome depends only on rD. In such an event, the
system is essentially one-dimensional, allowing the full
probability distribution to be solved relatively rapidly—
an approach that is more powerful than sampling trajecto-
ries one at a time, as it produces precise values for the
probability of finding any rate-difference at any given
time.

When the system’s relevant dynamics depends only on a
single variable, so is one-dimensional (1D), an effective
potential (Figs. 1 and 7) can be useful to depict stable
points of the system and the relative likelihood of the
systems state to move in one direction or another. An
effective potential, U(rD), based on the difference in firing
rates, rD, of two groups of cells can be defined up to an
arbitrary constant via:

drD
dt

¼ −
dU rDð Þ
drD

ð10Þ

The linear system (Eqs. (5, 7–9)) provides a clear exam-
ple where such an effective potential can be defined, for rD.
In this case (combining Eq. (9) and Eq. (10)) the effective
potential is given by:

U rDð Þ ¼ δ
2τ

r2D−
ID
τ

rM

IM
rD ð11Þ

where δ ¼ 1− WS þWxð Þ rM

IM
The integrator is leaky if δ>0,

which then produces a positive quadratic term in the effec-
tive potential (Usher and McClelland 2001). In our test of
robustness (Fig. 11) we vary the recurrent cross-inhibition,
Wx, such that if Wx<0.5 then δ>0 and the initial state of the
linear system is stable, whereas if Wx>0.5 then δ<0 and the
initial state of the linear system is unstable.

Nonlinear firing rate curves

Firing rate curves of neurons are rarely linear, or piece-wise
linear. In the following two subsections we explore how
nonlinearity of neural responses affects the single-variable
description of the decision-making process. We first de-
scribe general conditions whereby a nonlinear firing rate
curve for the neurons can still lead to a single-variable
model and an effective potential. We then describe the re-
sults when a quadratic term is added and in the final sub-
section include a cubic term. Of particular interest is how the
total input current, IS, can interact with any nonlinearity in
the neural response to alter the shape of the effective poten-
tial and how the bias current, ID, gains multiplicative factors
which can strengthen or weaken the input signal as a func-
tion of nonlinearity and firing-rate difference, rD.

The cubic (but not the quadratic) firing rate curve is used
for all two-variable model calculations and results in this
paper (Fig. 11).

Generalized nonlinear firing rate curves

For more general, nonlinear functions of neural firing rate as a
function of inputs, an effective potential for the variable rD can
be produced—i.e. the dynamics of rD depends only on rD—if
the excitatory self-coupling and inhibitory cross-coupling
strengths are balanced to each pool such that ε=(WS−Wx)=0.
Such a balance is unlikely in practice, but necessary, given the
biological reality of nonlinear neural responses, to produce a
single variable model, such as the commonly used drift diffu-
sion model (Ratcliff 1978) or any other single-variable model
(Eckhoff et al. 2008; Zhang et al. 2009; Zhou et al. 2009;
Zhang and Bogacz 2010). If such a balance can be assumed
then:

τ
dr1
dt

¼ −r1 þ F r1−r2; IS þ IDð Þ

τ
dr2
dt

¼ −r2 þ F r2−r1; IS−IDð Þ
ð12Þ

in which case, a Taylor expansion of the general nonlinear
function, F(Δr; Iapp) about F(0; IS) leads to:

τ
drS
dt

¼ −rS þ 2F 0; ISð Þ þ 2
X∞

n¼1

1

2nð Þ!
X2n

r¼0
C2n

r r2n−rD IrD
∂2n F

∂r2n−rD ∂I rD

τ
drD
dt

¼ ID
∂F
∂ID

−rD 1−2
∂F
∂rD

� �
þ 2
X∞

n¼1

1

2nþ 1ð Þ!
X2nþ1

r¼0
C2nþ1

r r2nþ1−r
D I rD

∂2nþ1F

∂r2nþ1−r
D ∂I rD

ð13Þ

where all derivatives of F are calculated at F(0; IS). Note that
the dynamics for the difference in rates, rD, are independent of
rS (as they are for the linear model, Eq. (7)) so can be
described by a single-variable (1D) model. Such a 1D model

can be represented by an effective potential,U(rD), defined via
Eq. (10) dU rDð Þ

drD
¼ − drD

dt

	 

. In the absence of a bias current (i.e.

if ID=0) we see from Eq. (13) that drSdt depends on even powers
of rD whereas drD

dt depends on odd powers of rD. The latter
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result means that the effective potential, U(rD) is a series of
even powers in rD (so symmetric about the origin) in the
absence of bias current. For the simulations within this paper,
we include the first three terms in such a series (a quadratic, a
quartic and a sextic term), to allow the baseline potential to
have up to three attractor states.

Quadratic firing rate curve

We can relax the assumption of linearity of the firing-rate
curve, by adding a quadratic term, such that

f Ið Þ ¼
0 if I ≤0

I
rM

IM
1þ a

I−IM

IM

� �
if 0 < I < IM

rM if I ≥ IM

8>><
>>: ð14Þ

where 0≤a≤1. A quadratic term is the simplest form of
nonlinearity, so we include it here to demonstrate the impact
of nonlinearity in the cleanest manner, before progressing to
inclusion of a cubic term—which allows the firing rate to
rise from a baseline of zero and to saturate without discon-
tinuity in its derivative—in the next subsection.

With WS=Wx (i.e. ε=0) and δ ¼ 1− WS þWxð Þ rM
IM

the

dynamics of the sum of rates of the two pools depends on
both sum and differences in rates:

τ
drS
dt

¼ −rS þ rM
IS
IM

1−að Þ þ arM
I2S þ I2D
2 IM
� �2 þ arD

ID
IM

þ a
r2D
2rM

1−δð Þ2 ð15Þ

producing a steady state summed rate that according to the
final term increases with the difference in rates and
according to the fourth term increases more for correct de-
cisions whereby the product of rD and ID is positive.

However, the dynamics for the difference in rates does
not depend on the sum of rates:

τ
drD
dt

¼ rM
ID
IM

1−a
IM−IS
IM

� �
−rD δ þ 1−δð Þa IM−IS

IM

� �� �
ð16Þ

The latter result allows us to follow the dynamics of a
single variable, the difference in firing rates, rD and to produce

an effective potential, U(rD) such that drD
dt ¼ − dU rDð Þ

drD

(see previous section). In the absence of any nonlinearity in
the firing-rate curves (α=0) and with perfect tuning of feed-
back weights (δ=0) the effective potential is linear, with a
slope proportional to the difference in applied currents (the
bias). Adding a quadratic term to the firing-rate curve
(0<α≤1) or imperfect tuning (0<δ≤1) leads to a quadratic
potential, with a point attractor at in the absence of input. If the

input is weak, the system maintains an attractor (stable fixed
point) near the origin, but given sufficient input (if

IS > IM 1þ δ
1−δð Þa

h i
) the fixed point becomes unstable as

the curvature of the potential changes sign. We note that the
nonlinear system can produce perfect integration of the dif-
ference in inputs if the total input is adjusted precisely such

that IS ¼ IM 1þ δ
1−δð Þa

h i
, in which case rate of change of rD is

again proportional to ID.
It is worthwhile noting that nonlinearity in the system

causes a scaling in the integration term for the input bias, ID
In particular, if the summed current to the system, IS, ramps
up over time then the effect of an unchanging input bias, ID,
increases multiplicatively over time. As shown by Wong
and others (Wong et al. 2007; Zhou et al. 2009), this sug-
gests one possible implementation of the suggested gain-
modulating urgency-gating signal (Cisek et al. 2009) is a
simple monotonic increase of unbiased input to a nonlinear
decision-making circuit.

Cubic firing rate curve

If we add a cubic term to the firing rate curve (Fig. 10a) we
can in principle remove all discontinuities in it (by setting α
=1 in the following equation):

f Ið Þ ¼
0 if I ≤ 0

1−að ÞrM I

IM
þ arM 3

I

IM

� �2

−2
I

IM

� �3
" #

if 0 < I < IM

rM if I ≥ IM

8>>><
>>>:

ð17Þ

In this case, again by setting WS=Wx (i.e. ε=0) and
setting a linear dependence of postsynaptic input on presyn-
aptic firing rate, the dynamics for the difference in firing
rates of two pools is independent of the sum of their rates.
The time dependence of the sum of rates, rS, depends on
both rS and rD:

τ
drS
dt

¼ −rS þ 1−að ÞrM IS
IM

þ 3arM

2

IS
IM

� �2

þ rD
rM

	 

1−δð Þ þ ID

IM

� �2( )

−
arM

2

IS
IM

� �3

þ 3
IS
IM

� �
rD
rM

	 

1−δð Þ þ ID

IM

� �2( )

ð18Þ

which can reduce with δ=0 to:

τ
drS
dt

¼ −rS þ 1−að ÞrM IS
IM

þ 3arM

2

IS
IM

� �2

þ rD
rM

	 

þ ID

IM

� �2( )

−
arM

2

IS
IM

� �3

þ 3
IS
IM

� �
rD
rM

	 

þ ID

IM

� �2( )
:

ð19Þ
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The dynamics of the rate-difference, rD, is independent of
rS and follows:

τ
drD
dt

¼ rM
ID
IM

1−aþ 3a
IS
IM

−a
3I2S þ I2D
2 IM
� �2

" #

−rD δ þ a 1−δð Þ 1−3
IS
IM

þ 3
I2S þ I2D
2 IM
� �2

" # !

−3a 1−δð Þ2 r2D
2rM

ID
IM

−
a

2
1−δð Þ3 r3D

rMð Þ2

ð20Þ

which is clearly independent of rS, allowing us to again
write an effective potential for the dynamics, such that
drD
dt ¼ − dU rDð Þ

drD
If the system is tuned such that δ=0 then

the dynamics simplify to produce:

τ
drD
dt

¼ rM
ID
IM

1−aþ 3a
IS
IM

−a
3I2S þ I2D
2 IM
� �2

" #

−arD 1−3
IS
IM

þ 3I2S þ 3I2D
2 IM
� �2

 !
−3a

r2D
2rM

ID
IM

−
a

2

r3D
rMð Þ2

ð21Þ

corresponding to an effective potential of

U rDð Þ ¼ −rD
rM

τ

ID
IM

1−aþ 3a
IS
IM

−a
3I2S þ I2D
2 IM
� �2

" #

þr2D
a

2τ
1−3

IS
IM

þ 3I2S þ 3I2D
2 IM
� �2

 !
þ r3D

a

2τrM
ID
IM

þ r4D
a

8τ rMð Þ2 :

ð22Þ

It is worth noting that any bias, ID as well as contributing to
a linear term in the effective potential acts to stabilize the
undecided state via its multiplicative increase of the quadratic
term of the potential, while reducing the effect of the bias via a
cubic term of the potential. As is the case with a quadratic
firing rate curve, the total current, IS, if large enough is able to
destabilize an otherwise stable initial state, while appropriate
choice of IS can cause the quadratic term in the potential to
vanish, so that for small rD the system behaves similarly to a
perfect integrator. However, in general, perfect integration is
never achieved with a cubic firing rate curve, as the effective
potential always contains a quartic component (and a cubic
component in the presence of a stimulus bias). Thus, in our
formulation with a sextic potential, we allow any quadratic
term to be able to vanish upon stimulus onset, but not any
higher order terms in the potential.

Appendix C: Effective potential formalism

These analyses of simple systems motivate our simulations
of a single-variable (1D) system in two ways. First, they
suggest that it is reasonable to extend a decision-making
system based on an integrator into one based on a leaky
integrator, as in the absence of input the difference in rates

follows τ drD
dt ¼ −brD An Ornstein-Uhlenbeck process re-

sults from the inclusion of noise in the system. Such a
process has been investigated in the context of two-
alternative forced choice decision-making and shown in
some circumstances to perform better than a perfect integra-
tor (Eckhoff et al. 2008; Zhou et al. 2009; Zhang and
Bogacz 2010). Second, the above analyses suggest those
features of neural circuits that cause nonlinearities in an
effective potential also determine how applied currents alter
the dynamics of the system. This allows us to modify the
effective potential in the presence of stimulus inputs in a
manner that depends on the pre-stimulus nonlinearity.

Since, in the absence of input a decision-making system
can possess three attractor states, our pre-stimulus potential
used in the majority of 1D calculations is sextic:

U rD; tð Þ ¼ b r2D−βr
4
D þ γr6D

� � ð23Þ

where b, β and γ are parameters defining the structure of the
network. Specifically, b, scales the nonlinearity, increasing
heights of barriers and depths of attractors, scaling inversely
with the times constant for deterministic rate changes. The
coefficients of the higher order terms in the potential, β and
γ, determine the location of the unstable fixed points (the
points beyond which rates must pass to escape the initial
stable state) and the stable fixed points of high rate. That is,
with neither input bias (ID=0) nor an urgency signal (GU=0)

the system possesses fixed points (where deD
dt ¼ 0 and the

potential has a maximum or minimum, dU
drD

¼ 0) at rD=

0 (stable), r2D ¼ β
2γ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β
2γ

	 
2
− 1

γ

r
(unstable) and r2D ¼ β

2γ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β
2γ

	 
2
− 1

γ

r
(stable). Note that when the nonlinearity pa-

rameter, b, is negative, the stability of all steady states
reverse. For our standard parameters, with a choice-
threshold set at ±20Hz, we fix the location of attractor states
at 0 and ±30Hz and the unstable fixed points at ±17Hz via
fixed values of β=4/900 and γ=β/1200. Our results do not
qualitatively depend on these values, so long as the thresh-
old for making a response is not much greater than the
highest stable steady state firing rates of the system (i.e.
30Hz with these parameters). Indeed, a quadratic potential
(with a single steady state at rD=0) produces almost identi-
cal results (data not shown). We vary the stability of
attractors (i.e. the height of barriers between stable states)
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through the parameter b, which is zero for a perfect integra-
tor. In our results with a quadratic potential, we vary b,
while setting β=γ=0.

Upon stimulus presentation the potential shifts, in its
most general form as:

U rD; tð Þ ¼ b0 r2D−βr
4
D þ γr6D

� �
−iD tð Þ ξrD−ζr3D

� �
−εiS tð Þbr2D−GU tð Þr2D

ð24Þ

where iD tð Þ ¼ ID tð Þ
IM

is the difference between two stimulus

currents (the bias), iS tð Þ ¼ IS tð Þ
IM

is the sum of the two stim-

ulus currents and GU(t) is a linearly ramping urgency gating
signal. A comparison of Eq. (24) with the cubic firing-rate
formalism (Eq. (22)) allows us to equate terms, such that

b′ ¼ δ þ a 1−δð Þ 1þ 3
I2SþI2D
2 IMð Þ2

� �� �
=τ ,β ¼ a 1−δð Þ3

2 rMð Þ2 δþa 1−δð Þ½ �, ε=

3(1−δ)/(2τIM), ξ ¼ rM

IM
1−a 1−3 IS

IM
− 3I2SþI2D

2 IMð Þ2
� �� �

=τ and ζ=

a(1−δ)2/2(τIMrM). Since nonlinearity in the firing rate
curve (a) can simultaneously deepen attractor wells by in-
creasing the nonlinearity in the potential (b), while decreasing
the effective signal strength through a reduction in the propor-
tionality constant, ξ, we also implemented 1D simulations for
which increasing b coincided with decreasing ξ. The param-
eter ζ is set to zero in most simulations, but can be given non-
zero values to assess the effects of the stimulus current on
changing the shape of the potential (as suggested by
Eqs. (21–22)) beyond the necessary addition of a linear term.
With our parameters for the firing rate model, the value of ζ
was small (ζ=.05a=.0005b), and its inclusion did not produce
any significant changes in the results.

Appendix D: Realistic pre-stimulus noise-induced
spontaneous activity

One advantage of the 2-variable (2D) system is that it pro-
duces a more realistic description of spontaneous network
activity than can be achieved with the 1D system. Since the
1D system—which only represents the difference in rates of
two groups—does not take into account the actual firing rate
of each group, it also cannot take account of the rate of a cell-
group passing zero and becoming negative. Thus the 1D
representation is only valid if the sum of firing rates is signif-
icantly greater than the typical difference in firing rates. When
the sum of the firing rates of the two neural groups is low—as
it is in periods of spontaneous firing—the difference in firing
rates in the 1D system can easily surpass the sum of rates and
render the model non-biophysical. To maintain realism of the
model, a hard boundary should be enforced, ensuring that
individual firing rates are non-negative, so that the difference
of firing rates never exceeds the sum. Such enforcement

requires a 2D system. Thus, we begin our investigation of 2-
D models with an analysis of spontaneous activity, the vari-
ability of which determines the variability in the starting point
at the onset of any stimulus processing.

In decision-making models, variability in the starting-point
reduces the model’s accuracy by producing a random initial
bias in favor of one input or another. In our standard 1D
simulations we assume the decision-making process begins
from an unbiased starting point, namely a δ-function at the
origin. In practice, one might expect an attractor-based system
with a fixed point to better constrain the starting point for
decision-making, because a perfect integrator accumulates
random noise in the interval between stimuli (Larsen and
Bogacz 2010). Indeed, a general problem for integrator
models is the fact that they necessarily integrate noise, and
thereby encounter an ever increasing, indeterminate offset
error in the absence of input—a problem handled using a reset
at the time of stimulus onset (see (Roitman and Shadlen 2002)
for electrophysiological evidence of such a reset). However, if
a 1D system possesses an attractor state, the firing rates remain
within its vicinity, so no reset is needed (Larsen and Bogacz
2010). We wished to assess the importance of these factors in
the 2D model, which can reliably reproduce the variability
wrought by spontaneous activity.

Figure 10 shows that in the absence of stimulus, the
difference between the 2D linear model (Fig. 10b) and 2D
nonlinear model (Fig. 10c) is less distinct than the qualita-
tive difference between an attractor model with no drift and
an integrator with noise-induced drift described above.
Note, however, that the linear model is only an integrator
when firing rates of both cell-groups lie on the linear portion
of the piece-wise linear firing rate curve. Because the mag-
nitude of the rate-difference cannot surpass the rate-sum
(firing rates cannot be negative) any system with two
coupled neural groups can only be an integrator in the
range−rS<rD<rS. With insufficient input, the linear system
possesses an attractor state of zero firing rates for both cell-
groups, just like the nonlinear model.

Figure 1b, c are produced with a noise term of D=
900Hz2s−1. The typical firing rates of spontaneous activity
depend on the level of noise in the system (here we assume
input noise as well as internal noise to be present in the
absence of a stimulus). In the linear model, one can solve for
the steady-state of the sum of firing rates in the absence of
inputs, as diffusion in a quadratic potential with a reflecting
boundary at the origin:

τ
drS
dt

¼ −rS þ Dη tð Þ if and only if 0 < rS :

The solution yields P rSð Þ∝exp − r2S
Dτ

	 

erf rSffiffiffiffiffi

Dτ
p
	 


. Thus, as-

suming a time constant of τ=10ms in our formalism with noise
levels given byD=100Hz2s−1, 900Hz2s−1 or 2500Hz2s−1, typical
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levels of spontaneous activity are 1, 3 or 5Hz respectively (where

rS∼
ffiffiffiffiffiffi
Dτ

p
) Thus one can assess whether reasonable levels of the

noise term are incorporated into a model of a decision-making
system via the levels of noise-driven spontaneous activity so
produced.

In practice, results of simulations of the decision-making
process starting from the equilibrium probability distribu-
tion in the absence of inputs differed little from those sim-
ulations starting from a δ-function at the origin. That is, a
variation of 1-5Hz in the initial values of the firing rate was
too small, compared to either the threshold of 20Hz or the
variability in rates produced by noise during stimulus pre-
sentation, to significantly impact the decision-making
process.

A difference between linear and nonlinear models can be
seen in the shapes of the probability distributions in Fig. 10b,
c. For the linear model, the difference in firing rates, rD, has a
uniform probability distribution (for a given rate-sum, rS, it
has no preferred value of rate-difference, rD). This leads to a
negative correlation between the firing rates, r1 and r2, of the
two cell-groups in the linear model. By contrast, the differ-
ence in rates always peaks at zero for the nonlinear system,
which produces near-circular contours of constant probabil-
ity in the limit a=1 (Fig. 10c). In such a case, the probability

density is approximately proportional to exp − r21þr22
2σ2

	 

such

that the two firing rates are uncorrelated. Thus the nonlinear
system can have uncorrelated firing rates between two
groups of cells in the absence of input, but a negative corre-
lation between them (as in all decision-making circuits) once
input is applied. Such a shift toward more negative cross-
correlations after a stimulus is applied is a unique feature of
the nonlinear model that in the future could be tested via
multi-unit electrophysiological recordings.
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