16 research outputs found
Recommended from our members
PprA Contributes to Deinococcus radiodurans Resistance to Nalidixic Acid, Genome Maintenance after DNA Damage and Interacts with Deinococcal Topoisomerases
PprA is known to contribute to Deinococcus radiodurans' remarkable capacity to survive a variety of genotoxic assaults. The molecular bases for PprA's role(s) in the maintenance of the damaged D. radiodurans genome are incompletely understood, but PprA is thought to promote D. radiodurans's capacity for DSB repair. PprA is found in a multiprotein DNA processing complex along with an ATP type DNA ligase, and the D. radiodurans toposiomerase IB (DraTopoIB) as well as other proteins. Here, we show that PprA is a key contributor to D. radiodurans resistance to nalidixic acid (Nal), an inhibitor of topoisomerase II. Growth of wild type D. radiodurans and a pprA mutant were similar in the absence of exogenous genotoxic insults; however, the pprA mutant exhibited marked growth delay and a higher frequency of anucleate cells following treatment with DNA-damaging agents. We show that PprA interacts with both DraTopoIB and the Gyrase A subunit (DraGyrA) in vivo and that purified PprA enhances DraTopoIB catalysed relaxation of supercoiled DNA. Thus, besides promoting DNA repair, our findings suggest that PprA also contributes to preserving the integrity of the D. radiodurans genome following DNA damage by interacting with DNA topoisomerases and by facilitating the actions of DraTopoIB
An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance
Deinococcus radiodurans R1 recovering from acute dose of γ radiation shows a biphasic mechanism of DNA double-strand break repair. The possible involvement of microsequence homology-dependent, or non-homologous end joining type mechanisms during initial period followed by RecA-dependent homologous recombination pathways has been suggested for the reconstruction of complete genomes in this microbe. We have exploited the known roles of exonuclease I in DNA recombination to elucidate the nature of recombination involved in DNA double-strand break repair during post-irradiation recovery of D. radiodurans. Transgenic Deinococcus cells expressing exonuclease I functions of Escherichia coli showed significant reduction in γ radiation radioresistance, while the resistance to far-UV and hydrogen peroxide remained unaffected. The overexpression of E. coli exonuclease I in Deinococcus inhibited DNA double-strand break repair. Such cells exhibited normal post-irradiation expression kinetics of RecA, PprA and single-stranded DNA-binding proteins but lacked the divalent cation manganese [(Mn(II)]-dependent protection from γ radiation. The results strongly suggest that 3' (ρ) 5' single-stranded DNA ends constitute an important component in recombination pathway involved in DNA double-strand break repair and that absence of sbcB from deinococcal genome may significantly aid its extreme radioresistance phenotype
Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation
A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions
DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway
Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member. Knockdown of DNAJA1 also induces CHIP-mediated mutp53 degradation, while its overexpression antagonizes statin-induced mutp53 degradation. Our study reveals that DNAJA1 controls the fate of misfolded mutp53, provides insights into potential strategies to deplete mutp53 through the mevalonate pathway–DNAJA1 axis, and highlights the significance of p53 status in impacting statins’ efficacy on cancer therapy
PprA promotes <i>D. radiodurans</i> growth following DNA damage.
<p><i>D. radiodurans</i> (WT) and a <i>pprA::cat</i> mutant (pprA) were treated with nalidixic acid (20 µg/ml) for 2 h (WTN, pprAN) and γ radiation (6 kGy) (WTG, pprAG). These cells were washed and resuspended in fresh TGY medium, and growth at 30°C was monitored as optical density 600 nm.</p
PprA promotes <i>D. radiodurans</i> genome maintenance following DNA damage.
<p>Both wild type (WT) and <i>pprA</i> mutant (Mutant) <i>D. radiodurans</i> cells were treated with nalidixic acid (Nal) for 2 h and 6 kGy γ radiation (gamma) and stained with DAPI to detect anucleate cells. Representative micrographs are shown in (A), where anucleate cells, lacking DAPI fluorescence, are indicated with arrows. The percent anucleate cells in each condition (∼500 cells/sample) is plotted in (B).</p