7,284 research outputs found

    Investigating 16O with the 15N(p,{\alpha})12C reaction

    Full text link
    The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5 MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha decay from resonant states in 16O was strongly observed for ten known excited states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was investigated particularly intensely in order to understand its particle decay channels.Comment: Submitted for Proceedings of Fourth International Workshop on State of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018 in Galveston, TX, US

    Experimental study of the 11B(p,3α)γ^{11}\text{B}(p,3\alpha)\gamma reaction at Ep=0.52.7E_p = 0.5-2.7 MeV

    Full text link
    Our understanding of the low-lying resonance structure in 12^{12}C remains incomplete. We have used the 11B(p,3α)γ^{11}\text{B}(p,3\alpha)\gamma reaction at proton energies of Ep=0.52.7E_p=0.5-2.7 MeV as a selective probe of the excitation region above the 3α3\alpha threshold in 12^{12}C. Transitions to individual levels in 12^{12}C were identified by measuring the 3α\alpha final state with a compact array of charged-particle detectors. Previously identified transitions to narrow levels were confirmed and new transitions to broader levels were observed for the first time. Here, we report cross sections, deduce partial γ\gamma-decay widths and discuss the relative importance of direct and resonant capture mechanisms.Comment: 9 pages, 7 figures, 5 tables; added details on data analysi

    Realistic constraints on the doubly charged bilepton couplings from Bhabha scattering with LEP data

    Full text link
    Upper limits on doubly charged bilepton couplings and masses are extracted from LEP data for Bhabha scattering at energy range s=183202\sqrt{s}=183-202 GeV using standard model program ZFITTER which calculates radiative corrections. We find that gL2/ML2<O(105)GeV2g_{L}^{2}/M_{L}^{2}<O(10^{-5})GeV^{-2} at 95% C.L. for scalar and vector bileptons.Comment: 5 pages, 1 EPS figur

    No evidence of an 11.16 MeV 2+ state in 12C

    Full text link
    An experiment using the 11B(3He,d)12C reaction was performed at iThemba LABS at an incident energy of 44 MeV and analyzed with a high energy-resolution magnetic spectrometer, to re-investigate states in 12C published in 1971. The original investigation reported the existence of an 11.16 MeV state in 12C that displays a 2+ nature. In the present experiment data were acquired at laboratory angles of 25-, 30- and 35- degrees, to be as close to the c.m. angles of the original measurements where the clearest signature of such a state was observed. These new low background measurements revealed no evidence of the previously reported state at 11.16 MeV in 12C

    Evidence for MBM_B and MCM_C phases in the morphotropic phase boundary region of (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3 : A Rietveld study

    Full text link
    We present here the results of the room temperature dielectric constant measurements and Rietveld analysis of the powder x-ray diffraction data on (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3(PMN-xxPT) in the composition range 0.20x0.450.20 \leq x \leq 0.45 to show that the morphotropic phase boundary (MPB) region contains two monoclinic phases with space groups Cm (or MBM_B type) and Pm (or MCM_C type) stable in the composition ranges 0.27x0.300.27 \leq x \leq 0.30 and 0.31x0.340.31 \leq x \leq 0.34, respectively. The structure of PMN-xxPT in the composition ranges 0x0 \leq x \leq 0.26, and 0.35x10.35 \leq x \leq1 is found to be rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure

    Optical Spectroscopy of the environment of a ULX in NGC 7331

    Full text link
    Optical photometric and spectroscopic data are presented that show an association of an ultraluminous X-ray source in NGC 7331 with a young star cluster of mass 1.1e5 solar masses and age 4.25 Myr. If the ULX is part of the bright stellar cluster, then the mass of the progenitor of the compact accretor must have been greater than about 40-50 solar masses in order to already have evolved through the supernova stage to a compact object. The companion star is also likely an evolved massive star. The emission line spectrum of the nebula surrounding the cluster can be interpreted as a result of photoionization by the cluster OB stars with an additional source of shock excitation producing strong [SII], [OI] and NII lines. This additional source appears to be as much as five times more powerful than the supernovae and stellar winds in the cluster can provide. Additional mechanical energy input associated with the ULX itself can help explain the residual shock excited line luminosities of the emission region.Comment: 17 pages, accepted to Ap

    Properties of the Chandra Sources in M81

    Get PDF
    The Chandra X-ray Observatory obtained a 50-ks observation of the central region of M81 using the ACIS-S in imaging mode. The global properties of the 97 x-ray sources detected in the inner 8.3x8.3 arcmin field of M81 are examined. Roughly half the sources are concentrated within the central bulge. The remainder are distributed throughout the disk with the brightest disk sources lying preferentially along spiral arms. The average hardness ratios of both bulge and disk sources are consistent with power law spectra of index Gamma~1.6 indicative of a population of x-ray binaries. A group of much softer sources are also present. The background source-subtracted logN-logS distribution of the disk follows a power law of index ~ -0.5 with no change in slope over three decades in flux. The logN-logS distribution of the bulge follows a similar shape but with a steeper slope above ~4.0e+37 ergs/s. There is unresolved x-ray flux from the bulge with a radial profile similar to that of the bulge sources. This unresolved flux is softer than the average of the bulge sources and extrapolating the bulge logN-logS distribution towards weaker sources can only account for 20% of the unresolved flux. No strong time variability was observed for any source with the exception of one bright, soft source.Comment: 5 pages, 3 color PS figures, to appear in ApJ
    corecore