7,284 research outputs found
Investigating 16O with the 15N(p,{\alpha})12C reaction
The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at
excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5
MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha
decay from resonant states in 16O was strongly observed for ten known excited
states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was
investigated particularly intensely in order to understand its particle decay
channels.Comment: Submitted for Proceedings of Fourth International Workshop on State
of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018
in Galveston, TX, US
Experimental study of the reaction at MeV
Our understanding of the low-lying resonance structure in C remains
incomplete. We have used the reaction at
proton energies of MeV as a selective probe of the excitation
region above the threshold in C. Transitions to individual
levels in C were identified by measuring the 3 final state with
a compact array of charged-particle detectors. Previously identified
transitions to narrow levels were confirmed and new transitions to broader
levels were observed for the first time. Here, we report cross sections, deduce
partial -decay widths and discuss the relative importance of direct and
resonant capture mechanisms.Comment: 9 pages, 7 figures, 5 tables; added details on data analysi
Realistic constraints on the doubly charged bilepton couplings from Bhabha scattering with LEP data
Upper limits on doubly charged bilepton couplings and masses are extracted
from LEP data for Bhabha scattering at energy range GeV
using standard model program ZFITTER which calculates radiative corrections. We
find that at 95% C.L. for scalar and
vector bileptons.Comment: 5 pages, 1 EPS figur
No evidence of an 11.16 MeV 2+ state in 12C
An experiment using the 11B(3He,d)12C reaction was performed at iThemba LABS
at an incident energy of 44 MeV and analyzed with a high energy-resolution
magnetic spectrometer, to re-investigate states in 12C published in 1971. The
original investigation reported the existence of an 11.16 MeV state in 12C that
displays a 2+ nature. In the present experiment data were acquired at
laboratory angles of 25-, 30- and 35- degrees, to be as close to the c.m.
angles of the original measurements where the clearest signature of such a
state was observed. These new low background measurements revealed no evidence
of the previously reported state at 11.16 MeV in 12C
Evidence for and phases in the morphotropic phase boundary region of : A Rietveld study
We present here the results of the room temperature dielectric constant
measurements and Rietveld analysis of the powder x-ray diffraction data on
(PMN-PT) in the composition range
to show that the morphotropic phase boundary (MPB)
region contains two monoclinic phases with space groups Cm (or type) and
Pm (or type) stable in the composition ranges and
, respectively. The structure of PMN-PT in the
composition ranges 0.26, and is found to be
rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are
compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure
Optical Spectroscopy of the environment of a ULX in NGC 7331
Optical photometric and spectroscopic data are presented that show an
association of an ultraluminous X-ray source in NGC 7331 with a young star
cluster of mass 1.1e5 solar masses and age 4.25 Myr. If the ULX is part of the
bright stellar cluster, then the mass of the progenitor of the compact accretor
must have been greater than about 40-50 solar masses in order to already have
evolved through the supernova stage to a compact object. The companion star is
also likely an evolved massive star. The emission line spectrum of the nebula
surrounding the cluster can be interpreted as a result of photoionization by
the cluster OB stars with an additional source of shock excitation producing
strong [SII], [OI] and NII lines. This additional source appears to be as much
as five times more powerful than the supernovae and stellar winds in the
cluster can provide. Additional mechanical energy input associated with the ULX
itself can help explain the residual shock excited line luminosities of the
emission region.Comment: 17 pages, accepted to Ap
Properties of the Chandra Sources in M81
The Chandra X-ray Observatory obtained a 50-ks observation of the central
region of M81 using the ACIS-S in imaging mode. The global properties of the 97
x-ray sources detected in the inner 8.3x8.3 arcmin field of M81 are examined.
Roughly half the sources are concentrated within the central bulge. The
remainder are distributed throughout the disk with the brightest disk sources
lying preferentially along spiral arms. The average hardness ratios of both
bulge and disk sources are consistent with power law spectra of index Gamma~1.6
indicative of a population of x-ray binaries. A group of much softer sources
are also present. The background source-subtracted logN-logS distribution of
the disk follows a power law of index ~ -0.5 with no change in slope over three
decades in flux. The logN-logS distribution of the bulge follows a similar
shape but with a steeper slope above ~4.0e+37 ergs/s. There is unresolved x-ray
flux from the bulge with a radial profile similar to that of the bulge sources.
This unresolved flux is softer than the average of the bulge sources and
extrapolating the bulge logN-logS distribution towards weaker sources can only
account for 20% of the unresolved flux. No strong time variability was observed
for any source with the exception of one bright, soft source.Comment: 5 pages, 3 color PS figures, to appear in ApJ
- …
