10 research outputs found

    Soil Carbon and Nitrogen Changes Under Douglas‐fir With and Without Red Alder

    No full text
    We sampled pure Douglas-fir (DF) [Pseudotsuga menziesii (Mirb.) Franco] end mixed red alder (Alnus rabra Bong.)(RA) and DF (RA/DF) stands in 1980 and in 1999 to investigate the influence of RA on soil C and N pools. In RA/DF plots with 25% RA, the soil N pool to a 45-cm depth increased significantly (P < 0.05) by 190 g N m(-2), corresponding to 10 g N m(-2) yr(-1) accretion: The average between treatment soil N difference in 1999 was 166 g m(-2), representing N accretion of 8.7 g m(-2) yr(-1). In pure DF plots, the soil N pool remained nearly constant. Resin N mineralization in RA/DF plots was about ten fold greater than on pure DF plots, but the enhanced resin N availability did not affect DF foliar N concentration. Temporal plot pairing was necessary within this landscape with high spatial variability to detect significant changes in soil N pools, and only large effects, such as N addition by RA, could be identified with statistical significance. Minimum detectable difference (MDD) estimates for mean total soil C differences in RA/DF plots showed that it would require about 30 more years of C accretion to detect differences at P < 0.05. Conversely, total soil N accretion in RA/DF plots was 28% greater than the MDD after 19 yr

    Composition and Cycling of Organic Carbon in Soil

    No full text

    Prospects of reusable endogenous hydrolyzing enzymes in bioethanol production by simultaneous saccharification and fermentation

    No full text
    corecore