13 research outputs found
Radioactive Holmium Acetylacetonate Microspheres for Interstitial Microbrachytherapy: An In Vitro and In Vivo Stability Study
Purpose The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted. Methods HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37Β°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS. Results After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days. Conclusion HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.Radiation, Radionuclides and ReactorsApplied Science
Development of microspheres for biomedical applications: a review
An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented
Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release
Micelles are colloidal particles with a size around 5β100Β nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a βmagic bulletβ a major step forward
Intratumoral Administration of Holmium-166 Acetylacetonate Microspheres:Antitumor Efficacy and Feasibility of Multimodality Imaging in Renal Cancer
<p>Purpose: The increasing incidence of small renal tumors in an aging population with comorbidities has stimulated the development of minimally invasive treatments. This study aimed to assess the efficacy and demonstrate feasibility of multimodality imaging of intratumoral administration of holmium-166 microspheres ((HoAcAcMS)-Ho-166). This new technique locally ablates renal tumors through high-energy beta particles, while the gamma rays allow for nuclear imaging and the paramagnetism of holmium allows for MRI.</p><p>Methods: (HoAcAcMS)-Ho-166 were administered intratumorally in orthotopic renal tumors (Balb/C mice). Post administration CT, SPECT and MRI was performed. At several time points (2 h, 1, 2, 3, 7 and 14 days) after MS administration, tumors were measured and histologically analyzed. Holmium accumulation in organs was measured using inductively coupled plasma mass spectrometry.</p><p>Results: (HoAcAcMS)-Ho-166 were successfully administered to tumor bearing mice. A striking near-complete tumor-control was observed in (HoAcAcMS)-Ho-166 treated mice (0.10 +/- 0.01 cm(3) vs. 4.15 +/- 0.3 cm(3) for control tumors). Focal necrosis and inflammation was present from 24 h following treatment. Renal parenchyma outside the radiated region showed no histological alterations. Post administration CT, MRI and SPECT imaging revealed clear deposits of (HoAcAcMS)-Ho-166 in the kidney.</p><p>Conclusions: Intratumorally administered (HoAcAcMS)-Ho-166 has great potential as a new local treatment of renal tumors for surgically unfit patients. In addition to strong cancer control, it provides powerful multimodality imaging opportunities.</p>