9 research outputs found

    The patient experience

    Get PDF
    The impact of improved treatments for the management of hormone-sensitive breast cancer extends beyond clinical responses. Thanks to appropriate literature and access to the internet, patient awareness of treatment options has grown and patients are now, in many cases, able to engage their oncologists in informed conversations regarding treatment and what to expect in terms of efficacy and safety. Indeed, patients realize that although there is no cure for metastatic disease, treatment can greatly reduce the risk of progression and in the adjuvant setting, where treatment is administered with a curative intent, current treatment options reduce the risk of relapse. The approval of letrozole throughout the breast cancer continuum has provided patients with many reassuring options. The improvement in outcome with letrozole is achieved without a detrimental effect on overall quality of life. Adverse events such as hot flushes, arthralgia, vaginal dryness, and potential osteoporosis are most significant from the patient’s perspective, and it is important that caregivers pay attention to patients experiencing these events, as they can impact compliance unless effectively explained and managed. The major benefits of letrozole are to improve prospects for long-term survivorship in the adjuvant setting and to delay progression and the need for chemotherapy in the metastatic setting

    Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps.

    Get PDF
    PMC3799840Reconstructive transplantation such as extremity and face transplantation is a viable treatment option for select patients with devastating tissue loss. Sensorimotor recovery is a critical determinant of overall success of such transplants. Although motor function recovery has been extensively studied, mechanisms of sensory re-innervation are not well established. Recent clinical reports of face transplants confirm progressive sensory improvement even in cases where optimal repair of sensory nerves was not achieved. Two forms of sensory nerve regeneration are known. In regenerative sprouting, axonal outgrowth occurs from the transected nerve stump while in collateral sprouting, reinnervation of denervated tissue occurs through growth of uninjured axons into the denervated tissue. The latter mechanism may be more important in settings where transected sensory nerves cannot be re-apposed. In this study, denervated osteomyocutaneous alloflaps (hind- limb transplants) from Major Histocompatibility Complex (MHC)-defined MGH miniature swine were performed to specifically evaluate collateral axonal sprouting for cutaneous sensory re-innervation. The skin component of the flap was externalized and serial skin sections extending from native skin to the grafted flap were biopsied. In order to visualize regenerating axonal structures in the dermis and epidermis, 50 um frozen sections were immunostained against axonal and Schwann cell markers. In all alloflaps, collateral axonal sprouts from adjacent recipient skin extended into the denervated skin component along the dermal-epidermal junction from the periphery towards the center. On day 100 post-transplant, regenerating sprouts reached 0.5 cm into the flap centripetally. Eight months following transplant, epidermal fibers were visualized 1.5 cm from the margin (rate of regeneration 0.06 mm per day). All animals had pinprick sensation in the periphery of the transplanted skin within 3 months post-transplant. Restoration of sensory input through collateral axonal sprouting can revive interaction with the environment; restore defense mechanisms and aid in cortical re-integration of vascularized composite allografts.JH Libraries Open Access Fun

    Depression and obesity: evidence of shared biological mechanisms

    No full text
    Depression and obesity are common conditions with major public health implications that tend to co-occur within individuals. The relationship between these conditions is bidirectional: the presence of one increases the risk for developing the other. It has thus become crucial to gain a better understanding of the mechanisms responsible for the intertwined downward physiological spirals associated with both conditions. The present review focuses specifically on shared biological pathways that may mechanistically explain the depression–obesity link, including genetics, alterations in systems involved in homeostatic adjustments (HPA axis, immuno-inflammatory activation, neuroendocrine regulators of energy metabolism including leptin and insulin, and microbiome) and brain circuitries integrating homeostatic and mood regulatory responses. Furthermore, the review addresses interventional opportunities and questions to be answered by future research that will enable a comprehensive characterization and targeting of the biological links between depression and obesity

    Supportive Cancer Care Using Chinese Medicine

    No full text

    Depression and obesity: evidence of shared biological mechanisms

    No full text
    corecore