4 research outputs found

    Phytochemical Screening of Methanolic Extract and Antibacterial Activity of Active Principles of Hepatoprotective Herb, Eclipta alba

    Get PDF
    Aerial parts of Eclipta alba are used traditionally for the treatment of several diseases of liver, skin and stomach. Methanolic extract and active principle compound of a well known Indian hepatoprotective herb, Eclipta alba was tested for in vitro antimicrobial studies. It was evaluated using zone of inhibition studies and minimum inhibitory concentration. The extract exhibited activity against all six strains studied. Phytochemical screening of the extract revealed the presence of tannins, flavonoids, coumestans, saponins and alkaloids etc. Ethylacetate fraction and further pure isolated wedelolactone showed enhanced antimicrobial activity. Staphylococcus epidermidis, Staphylococcus aureus and Salmonella typhimurium were most susceptible. Shigella flexneri was the most resistant bacterial strain. These results suggest coumestans/wedelolactone as a promising antimicrobial agent

    Two-oscillator basis expansion for the solution of relativistic mean field equations

    No full text
    In the relativistic mean field (RMF) calculations usually the basis expansion method is employed. For this one uses single harmonic oscillator (HO) basis functions. A proper description of the ground state nuclear properties of spherical nuclei requires a large (around 20) number of major oscillator shells in the expansion. In halo nuclei where the nucleons have extended spatial distributions, the use of single HO basis for the expansion is inadequate for the correct description of the nuclear properties, especially that of the surface region. In order to rectify these inadequacies, in the present work an orthonormal basis composed of two HO basis functions having different sizes is proposed. It has been shown that for a typical case of (A = 11) the ground state constructed using two-HO wave functions extends much beyond the second state or even third excited state of the single HO wave function. To demonstrate its usefulness explicit numerical RMF calculations have been carried out using this procedure for a set of representative spherical nuclei ranging from O-16 to Pb-208. The binding energies, charge radii and density distributions have been correctly reproduced in the present scheme using a much smaller number of major shells (around 10) in the expansion
    corecore