27 research outputs found

    Determination of carbohydrates in the herbal antidiabetic mixtures by GC-MC

    Get PDF
    Due to the wide range of biologically active substances, the herbal mixtures can influence the development of diabetes mellitus and its complications. Carbohydrates attract particular attention due to their hypoglycemic, hypolipidemic, anticholesterolemic, antioxidant, anti-inflammatory and detoxifying activities. The aim of this study was to investigate the content of carbohydrates through their monomeric composition in the herbal mixture samples: a) Urtica dioica leaf, Cichorium intybus roots, Rosa majalis fruits, Elymys repens rhizome, Taraxacum officinale roots, b) Arctium lappa roots, Elymys repens rhizome, Zea mays columns with stigmas, Helichrysum arenarium flowers, Rosa majalis fruits, c) Inula helenium rhizome with roots, Helichrysi arenarium flowers, Zea mays columns with stigmas, Origanum vulgare herb, Rosa majalis fruits, Taraxacum officinale roots, d) Cichorium intybus roots, Elymys repens rhizome, Helichrysum arenarium flowers, Rosa majalis fruits, Zea mays columns with stigmas and e) Urtica dioica leaf, Taraxacum officinale roots, Vaccinium myrtillus leaf, Rosa majalis fruits, Mentha piperita herb, which were used in Ukrainian folk medicine for the prevention and treatment of diabetes mellitus type 2. The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile aldononitrile acetate derivatives. The monomeric composition of polysaccharides was studied after their hydrolysis to form monosaccharides and polyalcohols. Quantitative analyses of free carbohydrates showed that the predominant sugars were fructose, glucose and disaccharide – sucrose, in all samples. Concerning the determination of polysaccharide monomers after hydrolysis, glucose was the most abundant in all samples. The chromatographic study revealed a number of polyalcohols that are important for the treatment and prevention of progression of diabetes mellitus and its complications, namely, mannitol, pinitol and myo-inositol

    DETERMINATION OF AMINO ACIDS AND SUGARS CONTENT IN ANTENNARIA DIOICA GAERTN

    Get PDF
    Objective: The purpose of our study was to determine sugars and amino acids content of Antennaria dioica Gaertn. herb. In continuation of the investigation of biologically active substances from Antennaria dioica Gaertn., it advisable to study the qualitative composition and quantitative contents of sugars and amino acids from the herb of this plant. Methods: The herb of Antennaria dioica Gaertn. was analyzed for the content of sugars by GC/MS. The amino acids were identified and quantified by HPLC method. Results: The results of GC/MS analysis showed that in Antennaria dioica Gaertn. herb D-glucose had the highest content (7.16Β±0.09) mg/g, followed by D-fructose (5.27Β±0.06) mg/g and D-saccharose (6.72Β±0.08) mg/g. In the raw material a large amount of monosaccharides derivative–Myo-inositol was revealed, a content of which was (2.12Β±0.06) mg/g. We determined 17 bound and 16 free amino acids in the Antennaria dioica Gaertn. by HPLC method. Conclusion: The contents of primary metabolites provide opportunities for creating medicine and food supplements. The results show that Antennaria dioica Gaertn. is a rich source of these important biologically active substances. The resulting data will be used with the further purpose to produce new drugs of natural origin

    HPLC ANALYSIS OF AMINO ACIDS CONTENT IN CRAMBE CORDIFOLIA AND CRAMBE KOKTEBELICA LEAVES

    Get PDF
    Objective: The aim of our study was to establish the content of some primary metabolites, such as amino acids in Crambe cordifolia and Crambe koktebelica. The lack of experimental data induced us to determine these compounds. Methods: Crambe cordifolia and Crambe koktebelica leaves were selected as the objects of the study. The amino acids in the raw materials were determined by the HPLC method. Results: The results of the research revealed that the leaves of Crambe cordifolia and Crambe koktebelica contain fifteen and sixteen free amino acids respectively. Among the free amino acids L-histidine was presented in Crambe cordifolia leaves in the greatest amount, its content was 12.19 Β΅g/mg. The content of free L-arginine, L-valine, L-phenylalanine, L-isoleucine was the greatest in Crambe koktebelica leaves, it was 2.23 Β΅g/mg, 2.04 Β΅g/mg, 1.74 Β΅g/mg, 1.50 Β΅g/mg respectively. The content of bound L-glutamic acid, Glycine, L-arginine, L-leucine was the highest in Crambe cordifolia and Crambe koktebelica leaves. Conclusion: The results of the study showed that Crambe cordifolia and Crambe koktebelica can be considered as a source of highly digestible amino acids that can be used to treat some diseases

    DETERMINATION OF CARBOHYDRATES CONTENT IN GENTIANA CRUCIATA L. BY GC/MS METHOD

    Get PDF
    Objective: Thus, the aim of our research was to determine the qualitative composition and quantitative content of carbohydrates in the studied plant material with the prospect of its application as a medicinal plant raw material. Methods: The carbohydrates of the herb of Gentiana cruciata L. determined by GC/MS method. Identification of monosaccharides was based on comparing their retention times with retention times of standards of the mass spectral library NIST 02. Quantification was done by using sorbitol added to the sample. Results: The quantitative content of 4 free carbohydrates such as D-saccharose (38.39 mg/g), D-Pinitol (12.01 mg/g), D-glucose (10.05 mg/g) and D-fructose (1.69 mg/g) was established in the herb of Gentiana cruciata L. Also, this method established the qualitative composition and quantitative content of eight carbohydrates (monosaccharides and their derivatives after hydrolysis): D-glucose (29.66 mg/g), D-Pinitol (22.24 mg/g), L-arabinose (4.26 mg/g), D-galactose (3.55 mg/g), D-xylose (1.80 mg/g), L-rhamnose (1.49 mg/g), D-Dulcitol (0.76 mg/g) and D-mannose (0.44 mg/g). Conclusion: The results of the study showed that carbohydrates from the Gentiana cruciata L. can be used as important resources of new ingredients for the pharmaceutical industry

    ДослідТСння вмісту ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот Ρƒ рослинних Π·Π±ΠΎΡ€Π°Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π•Π Π₯

    No full text
    The aim of the study was to research the qualitative composition and to investigate the quantitative content of some carboxylic acids in the herbal mixtures with established hypoglycemic, hypolipidemic and antioxidant activity in previous studies in vivo. Materials and methods. Studies of carboxylic acid content in the herbal mixtures were performed by HPLC analysis using Agilent Technologies 1200 liquid chromatograph (USA). Identification and quantitative analysis were performed using standard solutions of carboxylic compounds (tartaric, pyruvic, isocitric, citric, succinic and fumaric acids). Conclusions. HPLC analysis of five samples of the herbal mixture with antidiabetic activity showed the presence of six carboxylic acids. The dominant acid in all samples was isocitric acid. Among the most important for the prevention and treatment of diabetes, high levels of succinic and fumaric acids have been identified and established. The obtained data indicate a correlation between the phytochemical composition of the studied herbal mixtures and their pharmacodynamics, which was previously establishedЦСль. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ качСствСнный состав ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ количСствСнноС содСрТаниС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… сборах, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ Π³ΠΈΠΏΠΎΠ³Π»ΠΈΠΊΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ, Π³ΠΈΠΏΠΎΠ»ΠΈΠΏΠΈΠ΄Π΅ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ Π°Π½Ρ‚ΠΈΠΎΠΊΡΠΈΠ΄Π°Π½Ρ‚Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… исслСдованиях in vivo. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС содСрТания ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… сборах выполняли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π­Π–Π₯ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Тидкостного Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π° Agilent Technologies 1200 (БША). Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ ΠΈ количСствСнный Π°Π½Π°Π»ΠΈΠ· ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с использованиСм стандартных растворов ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… соСдинСний (Π²ΠΈΠ½Π½ΠΎΠΉ, ΠΏΠΈΡ€ΠΎΠ²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΎΠΉ, ΠΈΠ·ΠΎΠ»ΠΈΠΌΠΎΠ½Π½ΠΎΠΉ, Π»ΠΈΠΌΠΎΠ½Π½ΠΎΠΉ, янтарной ΠΈ Ρ„ΡƒΠΌΠ°Ρ€ΠΎΠ²ΠΎΠΉ кислот). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ хроматографичСского исслСдования Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ Π² исслСдуСмых ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… содСрТится Π² большом количСствС изолимонная кислота, содСрТаниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ составляСт (45,22Β±0,04) ΠΌΠ³/Π³ Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ сборС β„– 3, (63,65Β±0,06) ΠΌΠ³/Π³ Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ сборС β„– 4, (7,51Β±0,02) ΠΌΠ³/Π³ Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ сборС β„– 7, (2,54Β±0,01) ΠΌΠ³/Π³ Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ сборС β„– 13 ΠΈ (43,48Β±0,05) ΠΌΠ³/Π³ Π² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ сборС β„– 19. ΠšΡ€ΠΎΠΌΠ΅ этого Π±Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ высокоС содСрТаниС янтарной кислоты, ΠΊΠ°ΠΊ Π²Π°ΠΆΠ½ΠΎΠ³ΠΎ рСгулятора ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ дисфункции ΠΈ Ρ„ΡƒΠΌΠ°Ρ€ΠΎΠ²ΠΎΠΉ кислоты, ΠΊΠ°ΠΊ ΠΌΠΎΡ‰Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½ΠΎΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈ антиоксидантного Π°Π³Π΅Π½Ρ‚Π°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’Π­Π–Π₯ Π°Π½Π°Π»ΠΈΠ· пяти ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… сборов с антидиабСтичСской Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΡˆΠ΅ΡΡ‚ΠΈ ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²Ρ‹Ρ… кислот. Π”ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ кислотой Π²ΠΎ всСх ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… Π±Ρ‹Π»Π° изолимонная кислота. Π‘Ρ€Π΅Π΄ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹Ρ… для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния сахарного Π΄ΠΈΠ°Π±Π΅Ρ‚Π° Π±Ρ‹Π»ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ΠΈ установлСно высокоС количСствСнноС содСрТаниС янтарной ΠΈ Ρ„ΡƒΠΌΠ°Ρ€ΠΎΠ²ΠΎΠΉ кислот. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ коррСляционной связи ΠΌΠ΅ΠΆΠ΄Ρƒ фитохимичСским составом ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… сборов ΠΈ ΠΈΡ… Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠΉ, установлСнной ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠœΠ΅Ρ‚Π°. ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π±ΡƒΠ»ΠΎ Π²ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ якісний склад Ρ‚Π° дослідити ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ вміст дСяких ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот Ρƒ рослинних Π·Π±ΠΎΡ€Π°Ρ…, Ρ‰ΠΎ ΠΌΠ°ΡŽΡ‚ΡŒ встановлСну Π³Ρ–ΠΏΠΎΠ³Π»Ρ–ΠΊΠ΅ΠΌΡ–Ρ‡Π½Ρƒ, Π³Ρ–ΠΏΠΎΠ»Ρ–ΠΏΡ–Π΄Π΅ΠΌΡ–Ρ‡Π½Ρƒ Ρ‚Π° антиоксидантну Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρƒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ–Ρ… дослідТСннях in vivo. ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ДослідТСння вмісту ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот Ρƒ рослинних Π·Π±ΠΎΡ€Π°Ρ… Π²ΠΈΠΊΠΎΠ½ΡƒΠ²Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π’Π•Π Π₯ Π·Π° допомогою Ρ€iΠ΄ΠΈΠ½Π½ΠΎΠ³ΠΎ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π° Agilent Technologies 1200 (БША). Π†Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–ΡŽ Ρ‚Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π· використанням стандартних Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… сполук (Π²ΠΈΠ½Π½ΠΎΡ—, ΠΏΡ–Ρ€ΠΎΠ²ΠΈΠ½ΠΎΠ³Ρ€Π°Π΄Π½ΠΎΡ—, Ρ–Π·ΠΎΠ»ΠΈΠΌΠΎΠ½Π½ΠΎΡ—, Π»ΠΈΠΌΠΎΠ½Π½ΠΎΡ—, Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— Ρ‚Π° Ρ„ΡƒΠΌΠ°Ρ€ΠΎΠ²ΠΎΡ— кислот). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π—Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΎΠ³ΠΎ дослідТСння Π±ΡƒΠ»ΠΎ встановлСно, Ρ‰ΠΎ Ρƒ дослідТуваних Π·Ρ€Π°Π·ΠΊΠ°Ρ… ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒΡΡ Π² Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΡ–ΠΉ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Ρ–Π·ΠΎΠ»ΠΈΠΌΠΎΠ½Π½Π° кислота, вміст якої ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ (45,22Β±0,04) ΠΌΠ³/Π³ Ρƒ рослинному Π·Π±ΠΎΡ€Ρ– β„– 3, (63,65Β±0,06) ΠΌΠ³/Π³ Ρƒ рослинному Π·Π±ΠΎΡ€Ρ– β„– 4, (7,51Β±0,02) ΠΌΠ³/Π³ Ρƒ рослинному Π·Π±ΠΎΡ€Ρ– β„– 7, (2,54Β±0,01) ΠΌΠ³/Π³ Ρƒ рослинному Π·Π±ΠΎΡ€Ρ– β„– 13 Ρ‚Π° (43,48Β±0,05) ΠΌΠ³/Π³ Ρƒ рослинному Π·Π±ΠΎΡ€Ρ– β„– 19. ΠžΠΊΡ€Ρ–ΠΌ Ρ†ΡŒΠΎΠ³ΠΎ Π±ΡƒΠ»ΠΎ виявлСно високий вміст Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти, як Π²Π°ΠΆΠ»ΠΈΠ²ΠΎΠ³ΠΎ рСгулятора ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ— дисфункції Ρ‚Π° Ρ„ΡƒΠΌΠ°Ρ€ΠΎΠ²ΠΎΡ— кислоти, як ΠΏΠΎΡ‚ΡƒΠΆΠ½ΠΎΠ³ΠΎ Ρ–ΠΌΡƒΠ½ΠΎΠΌΠΎΠ΄ΡƒΠ»ΡŽΡŽΡ‡ΠΎΠ³ΠΎ, ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Π° антиоксидантного Π°Π³Π΅Π½Ρ‚Π°. Висновки. Π’Π•Π Π₯ Π°Π½Π°Π»Ρ–Π· п’яти Π·Ρ€Π°Π·ΠΊΡ–Π² рослинних Π·Π±ΠΎΡ€Ρ–Π² Π· Π°Π½Ρ‚ΠΈΠ΄Ρ–Π°Π±Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π² Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ ΡˆΠ΅ΡΡ‚ΠΈ ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΈΡ… кислот. Π”ΠΎΠΌΡ–Π½ΡƒΡŽΡ‡ΠΎΡŽ ΠΊΠΈΡΠ»ΠΎΡ‚ΠΎΡŽ Ρƒ всіх Π·Ρ€Π°Π·ΠΊΠ°Ρ… Π±ΡƒΠ»Π° Ρ–Π·ΠΎΠ»ΠΈΠΌΠΎΠ½Π½Π° кислота. Π‘Π΅Ρ€Π΅Π΄ Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΡ… для ΠΏΡ€ΠΎΡ„Ρ–Π»Π°ΠΊΡ‚ΠΈΠΊΠΈ Ρ‚Π° лікування Ρ†ΡƒΠΊΡ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄Ρ–Π°Π±Π΅Ρ‚Ρƒ Π±ΡƒΠ»ΠΎ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎ Ρ‚Π° встановлСно високий ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ вміст Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— Ρ‚Π° Ρ„ΡƒΠΌΠ°Ρ€ΠΎΠ²ΠΎΡ— кислот. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΄Π°Π½Ρ– ΡΠ²Ρ–Π΄Ρ‡Π°Ρ‚ΡŒ ΠΏΡ€ΠΎ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ корСляційного зв’язку ΠΌΡ–ΠΆ Ρ„Ρ–Ρ‚ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌ складом дослідТуваних рослинних Π·Π±ΠΎΡ€Ρ–Π² Ρ‚Π° Ρ—Ρ… Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΎΡŽ, Ρ‰ΠΎ Π±ΡƒΠ»ΠΎ встановлСно ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒ

    Analysis of carboxylic acids of Crambe cordifolia Steven

    No full text
    Crambe cordifolia Steven is a perennial herb and contains many biologically active substances, including amino acids, quercetin and glycosides of kaempferol. In continuation of the investigation of these plant compounds, it is advisable to study the qualitative composition and quantitative contents of carboxylic acids. Using a HPLC method the quantitative content of the following organic acids was identified and determined: pyruvic (40.66 mg/g), isocitric (12.88 mg/g), citric (8.71 mg/g), succinic (38.03 mg/g) and malic (0.75 mg/g). Among fatty acids the saturated and unsaturated acids were determined by the GC/MS method. The content of polyunsaturated fatty acids of the total fatty acids was 56.97%, saturated – 38.53% and monounsaturated – 4.50%. Linolenic and palmitic acids dominated among the determined 7 fatty acids, their content was 9.68 mg/g (47.87%) and 4.88 mg/g (24.14%). The results of the study show that Crambe cordifolia Steven leaves is a source of carboxylic acids

    ВивчСння Тирнокислотного складу Arnica foliosa Nutt. ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π₯/МБ

    No full text
    Medicinal plants have been considered as an important source for the prevention and treatment of various diseases. The genus Arnica L. is a genus of Asteraceae family, many species of which are used in traditional medicine. Arnica chamissonis Less. and Arnica foliosa Nutt., which belong to plants of the genus Arnica L., are successfully grown in the culture. There is insufficient information in the literature on the biologically active substances of Arnica foliosa Nutt. The presence of sesquiterpene lactones in the leaves and inflorescences is indicated. The flowers contain polysaccharides, monosaccharides, which mainly contain D-glucose and D-xylose, as well as phenolic compounds (quercetin, luteolin, kaempferol) and essential oils.The aim.Β The aim of our study was to identify and determine the quantitative content of fatty acids by gas chromatography/mass spectrometry method (GC/MS) in Arnica foliosa Nutt. herb.Materials and methods.Β The determination of fatty acids composition of Arnica foliosa Nutt. was carried out by gas chromatograph Agilent 6890N with a mass detector 5973 inert (Agilent Technologies, USA).Results.Β The analysis of Arnica foliosa Nutt. herb showed a mixture of saturated (1.61 mg/g; 48.79 %) and unsaturated (1.69 mg/g; 51.21 % from total content acids) fatty acids. The main components of Arnica foliosa Nutt. herb were palmitic (1.02 mg/g; 30.91 % from total content acids), linolenic (0.96 mg/g; 29.09 % from total content acids) and linoleic (0.67 mg/g; 20.30 % from total content acids) acids. This raw material is a source of essential fatty acids, such as omega-3 (linolenic acid) and omega-6 (linoleic acid).Conclusions. As a result of Arnica foliosa Nutt. research, the presence of fatty acids is established in its raw material. The dominant fatty acids in the studied raw material were palmitic, linolenic and linoleic acids, the content of which was 30.91 % (1.02 mg/g), 29.09 % (0.96 mg/g) and 20.30 % (0.67 mg/g) from total content acids, respectively. The result shows that Arnica foliosa Nutt. is the source of fatty acids, so the use of this plant raw material for new remedies is possible in the futureЛСкарствСнныС растСния стали Π²Π°ΠΆΠ½Ρ‹ΠΌ источником для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π ΠΎΠ΄ Arnica L. – Ρ€ΠΎΠ΄ сСмСйства астровых, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅. Arnica chamissonis Less. ΠΈ Arnica foliosa Nutt., ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΊ растСниям Ρ€ΠΎΠ΄Π° Arnica L., ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅. Π’ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ нСдостаточно ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСствах Arnica foliosa Nutt. Показано Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ сСсквитСрпСновых Π»Π°ΠΊΡ‚ΠΎΠ½ΠΎΠ² Π² Π»ΠΈΡΡ‚ΡŒΡΡ… ΠΈ соцвСтиях. Π¦Π²Π΅Ρ‚ΠΊΠΈ содСрТат полисахариды, моносахариды, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² основном содСрТат D-Π³Π»ΡŽΠΊΠΎΠ·Ρƒ ΠΈ D-ксилозу, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Π΅ соСдинСния (ΠΊΠ²Π΅Ρ€Ρ†Π΅Ρ‚ΠΈΠ½, Π»ΡŽΡ‚Π΅ΠΎΠ»ΠΈΠ½, ΠΊΠ΅ΠΌΠΏΡ„Π΅Ρ€ΠΎΠ») ΠΈ эфирныС масла.ЦСль. ЦСлью нашСго исслСдования Π±Ρ‹Π»Π° идСнтификация ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ количСствСнного содСрТания ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-масс-спСктромСтрии (Π“Π₯/МБ) Π² Ρ‚Ρ€Π°Π²Π΅ Arnica foliosa Nutt.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Тирнокислотного состава Arnica foliosa Nutt. ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° Π³Π°Π·ΠΎΠ²ΠΎΠΌ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π΅ Agilent 6890N с масс-Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ 5973 inert (Agilent Technologies, БША).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Анализ Ρ‚Ρ€Π°Π²Ρ‹ Arnica foliosa Nutt. ΠΏΠΎΠΊΠ°Π·Π°Π» Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ насыщСнных (1,61 ΠΌΠ³/Π³; 48,79 % ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства всСх кислот) ΠΈ нСнасыщСнных (1,69 ΠΌΠ³/Π³; 51,21 % ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства всСх кислот) ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ Arnica foliosa Nutt. Π±Ρ‹Π»ΠΈ ΠΏΠ°Π»ΡŒΠΌΠΈΡ‚ΠΈΠ½ΠΎΠ²Π°Ρ (1,02 ΠΌΠ³/Π³; 30,91 % ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства всСх кислот), линолСновая (0,96 ΠΌΠ³/Π³; 29,09 % ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства всСх кислот) ΠΈ линолСвая (0,67 ΠΌΠ³/Π³; 20,30 % ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства всСх кислот) кислоты. Π­Ρ‚ΠΎ ΡΡ‹Ρ€ΡŒΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ источником Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡ‹Ρ… ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ ΠΎΠΌΠ΅Π³Π°-3 (линолСновая кислота) ΠΈ ΠΎΠΌΠ΅Π³Π°-6 (линолСвая кислота).Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдования, Π² ΡΡ‹Ρ€ΡŒΠ΅ Arnica foliosa Nutt., установлСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот. Π”ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΆΠΈΡ€Π½Ρ‹ΠΌΠΈ кислотами Π² исслСдуСмом ΡΡ‹Ρ€ΡŒΠ΅ Π±Ρ‹Π»ΠΈ ΠΏΠ°Π»ΡŒΠΌΠΈΡ‚ΠΈΠ½ΠΎΠ²Π°Ρ, линолСновая ΠΈ линолСвая кислоты, содСрТаниС ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… составляло 30,91 % (1,02 ΠΌΠ³/Π³), 29,09 % (0,96 ΠΌΠ³/Π³) ΠΈ 20,30 % (0,67 ΠΌΠ³/Π³) ΠΎΡ‚ ΠΎΠ±Ρ‰Π΅Π³ΠΎ количСства всСх кислот, соотвСтствСнно. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ исслСдования ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Arnica foliosa Nutt. ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ источником ΠΆΠΈΡ€Π½Ρ‹Ρ… кислот, поэтому пСрспСктивно использованиС этого Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ для получСния Π½ΠΎΠ²Ρ‹Ρ… лСкарствСнных срСдств Π² Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌΠ›Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΡ– рослини стали Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎΠΌ для ΠΏΡ€ΠΎΡ„Ρ–Π»Π°ΠΊΡ‚ΠΈΠΊΠΈ Ρ‚Π° лікування Ρ€Ρ–Π·Π½ΠΈΡ… Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΡŒ. Π Ρ–Π΄ Arnica L. – Ρ€Ρ–Π΄ Ρ€ΠΎΠ΄ΠΈΠ½ΠΈ айстрових, Π±Π°Π³Π°Ρ‚ΠΎ Π²ΠΈΠ΄Ρ–Π² якого Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Ρƒ Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½Ρ–ΠΉ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ–. Arnica chamissonis Less. Ρ‚Π° Arnica foliosa Nutt., Ρ‰ΠΎ Π½Π°Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π΄ΠΎ рослин Ρ€ΠΎΠ΄Ρƒ Arnica L., Π΄ΠΎΠ±Ρ€Π΅ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΡƒΡŽΡ‚ΡŒΡΡ. Π£ Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ– Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎ Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— ΠΏΡ€ΠΎ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ Arnica foliosa Nutt. Π£ΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡ€ΠΎ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Ρƒ листках Ρ‚Π° суцвіттях сСсквітСрпСнових Π»Π°ΠΊΡ‚ΠΎΠ½Ρ–Π². ΠšΠ²Ρ–Ρ‚ΠΊΠΈ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ полісахариди, моносахариди, ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½ΠΎ D-Π³Π»ΡŽΠΊΠΎΠ·Ρƒ Ρ‚Π° D-ксилозу, Π° Ρ‚Π°ΠΊΠΎΠΆ Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ– сполуки (ΠΊΠ²Π΅Ρ€Ρ†Π΅Ρ‚ΠΈΠ½, Π»ΡŽΡ‚Π΅ΠΎΠ»Ρ–Π½, ΠΊΠ΅ΠΌΠΏΡ„Π΅Ρ€ΠΎΠ») Ρ‚Π° Π΅Ρ„Ρ–Ρ€Π½Ρ– ΠΎΠ»Ρ–Ρ—.ΠœΠ΅Ρ‚Π°. ΠœΠ΅Ρ‚ΠΎΡŽ нашого дослідТСння Π±ΡƒΠ»Π° ідСнтифікація Ρ‚Π° визначСння ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ вмісту ΠΆΠΈΡ€Π½ΠΈΡ… кислот ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΠ²ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-мас-спСктромСтрії (Π“Π₯/МБ) Ρƒ Ρ‚Ρ€Π°Π²Ρ– Arnica foliosa Nutt.ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ВизначСння Тирнокислотного складу Arnica foliosa Nutt. ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° Π³Π°Π·ΠΎΠ²ΠΎΠΌΡƒ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΎΠΌ Agilent 6890N Ρ–Π· мас-Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ 5973 inert (Agilent Technologies, БША).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Аналіз Ρ‚Ρ€Π°Π²ΠΈ Arnica foliosa Nutt. ΠΏΠΎΠΊΠ°Π·Π°Π² Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ насичСних (1,61 ΠΌΠ³ / Π³; 48,79 % Π²Ρ–Π΄ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– усіх кислот) Ρ‚Π° нСнасичСних (1,69 ΠΌΠ³ / Π³; 51,21 % Π²Ρ–Π΄ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– усіх кислот) ΠΆΠΈΡ€Π½ΠΈΡ… кислот. Основними ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ Arnica foliosa Nutt. Π±ΡƒΠ»ΠΈ ΠΏΠ°Π»ΡŒΠΌΡ–Ρ‚ΠΈΠ½ΠΎΠ²Π° (1,02 ΠΌΠ³ / Π³; 30,91 % Π²Ρ–Π΄ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– усіх кислот), Π»Ρ–Π½ΠΎΠ»Π΅Π½ΠΎΠ²Π° (0,96 ΠΌΠ³ / Π³; 29,09 % Π²Ρ–Π΄ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– усіх кислот) Ρ‚Π° Π»Ρ–Π½ΠΎΠ»Π΅Π²Π° (0,67 ΠΌΠ³ / Π³; 20,30 % Π²Ρ–Π΄ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– усіх кислот) кислоти. Ця сировина ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎΠΌ Π½Π΅Π·Π°ΠΌΡ–Π½Π½ΠΈΡ… ΠΆΠΈΡ€Π½ΠΈΡ… кислот, Ρ‚Π°ΠΊΠΈΡ… як ΠΎΠΌΠ΅Π³Π°-3 (Π»Ρ–Π½ΠΎΠ»Π΅Π½ΠΎΠ²Π° кислота) Ρ‚Π° ΠΎΠΌΠ΅Π³Π°-6 (Π»Ρ–Π½ΠΎΠ»Π΅Π²Π° кислота).Висновки. Π£ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– дослідТСння, Π² сировині Arnica foliosa Nutt., встановлСно Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΆΠΈΡ€Π½ΠΈΡ… кислот. Π”ΠΎΠΌΡ–Π½ΡƒΡŽΡ‡ΠΈΠΌΠΈ ΠΆΠΈΡ€Π½ΠΈΠΌΠΈ кислотами Ρƒ дослідТуваній сировині Π±ΡƒΠ»ΠΈ ΠΏΠ°Π»ΡŒΠΌΡ–Ρ‚ΠΈΠ½ΠΎΠ²Π°, Π»Ρ–Π½ΠΎΠ»Π΅Π½ΠΎΠ²Π° Ρ‚Π° Π»Ρ–Π½ΠΎΠ»Π΅Π²Π° кислоти, вміст яких становив 30,91 % (1,02 ΠΌΠ³/Π³), 29,09 % (0,96 ΠΌΠ³/Π³) Ρ‚Π° 20,30 % (0,67Β ΠΌΠ³/Π³) Π²Ρ–Π΄ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– усіх кислот, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ дослідТСння ΠΏΠΎΠΊΠ°Π·ΡƒΡ”, Ρ‰ΠΎ Ρ‚Ρ€Π°Π²Π° Arnica foliosa Nutt. ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π΄ΠΆΠ΅Ρ€Π΅Π»ΠΎΠΌ ΠΆΠΈΡ€Π½ΠΈΡ… кислот, Ρ‚ΠΎΠΌΡƒ пСрспСктивним Ρ” використання Ρ†Ρ–Ρ”Ρ— рослинної сировини для одСрТання Π½ΠΎΠ²ΠΈΡ… Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… засобів Ρƒ ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠΌ

    Determination of the optimum extraction regime of reducing compounds and flavonoids of Primula denticulata Smith leaves by a dispersion analysis

    No full text
    Herbal medicines are widely used in the complex treatment of various diseases. Therefore, theoretical and practical interest is the in-depth study of drumstick primrose (Primula denticulata Smith). The study aimed to determine the optimal extraction mode of flavonoids and reducing compounds of drumstick primrose leaves. The concentration of ethanol, the ratio of raw materials and extractant, and extraction method were studied by dispersion analysis. This allowed reducing the number of experiments from 64 to 16. To obtain the alcohol extract of drumstick primrose leaves with the highest content of reducing compounds and flavonoids, found that maceration is the optimal method of extraction, the ratio of raw materials to extractant should be 1 to 5 and 40% ethanol is the most appropriate extractant

    Determination of carbohydrates and fructans content in Cyperus esculentus L.

    No full text
    The tiger nut contains different active ingredients like oil, tannins, sterols, saponins, alkaloids, vitamins C and E, minerals, and resins. There is a lack of information about carbohydrates content of Cyperus esculentus L. Thus, the aim of this study was to determine the content of carbohydrates of tiger nut herb and tubers. The qualitative composition and quantitative content of carbohydrates in tubers and herb of tiger nut (Cyperus esculentus L.) were determined by using a GC/MS method. The results of analysis showed that tiger nut herb have free carbohydrates, namely D-saccharose, D-glucose, D-Mannitol, and D-fructose, while tubers have only disaccharide D-saccharose. Free D-saccharose presented in raw materials in the greatest amount, the content in tubers was 63.72 mg/g, in the herb – 9.79 mg/g, respectively. Monosaccharides and their derivatives after hydrolysis presented to D-glucose, D-xylose, D-galactose, D-arabinose in tubers, and D-xylose, D-glucose, D-arabinose, D-galactose, D-Dulcitol, D-Mannitol, D-mannose in the herb of tiger nut. D-glucose dominates in tubers and D-xylose in the herb, their content was 177.26 mg/g and 39.07 mg/g, respectively. The total content of fructans was determined by the spectrophotometric method. Its content was 13.49% in tubers and 8.78% in the herb of tiger nut

    ο»ΏDetermination of amino acids of plants from Angelica L. genus by HPLC method

    No full text
    One of the tasks of pharmaceutical science is to find new sources of effective drugs. Such sources include plants such as Angelica archangelica L. and Angelica sylvestris L., which have been used for many years to treat various diseases in folk medicine. Because the chemical composition of these plants is poorly understood, the aim of our study was to investigate the amino acid composition of the leaves of A. archangelica L. and A. sylvestris L. The amino acids of the leaves of the study species of the genus Angelica L. were determined by the HPLC method. Eighteen free and nineteen bound amino acids were identified in the leaves of A. archangelica L. The A. sylvestris L. leaves contained nineteen free and the same amount of bound amino acids. High concentrations of free and bound amino acids such as L-glutamic acid and L-aspartic acid predominate in A. archangelica L. and A. sylvestris L. This allowed these amino acids to be considered distinguishing markers of the study plants. Character metabolic processes in which these amino acids take part may be associated with the medicinal properties of these plants pursuant to their use in medicine and, therefore, may contribute to the insight of their therapeutic properties
    corecore