30 research outputs found

    Ovarian Tumor Characterization and Classification Using Ultrasound-A New Online Paradigm.

    No full text
    Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Image mining algorithms have been predominantly used to give the physicians a more objective, fast, and accurate second opinion on the initial diagnosis made from medical images. The objective of this work is to develop an adjunct computer-aided diagnostic technique that uses 3D ultrasound images of the ovary to accurately characterize and classify benign and malignant ovarian tumors. In this algorithm, we first extract features based on the textural changes and higher-order spectra information. The significant features are then selected and used to train and evaluate the decision tree (DT) classifier. The proposed technique was validated using 1,000 benign and 1,000 malignant images, obtained from ten patients with benign and ten with malignant disease, respectively. On evaluating the classifier with tenfold stratified cross validation, the DT classifier presented a high accuracy of 97 %, sensitivity of 94.3 %, and specificity of 99.7 %. This high accuracy was achieved because of the use of the novel combination of the four features which adequately quantify the subtle changes and the nonlinearities in the pixel intensity variations. The rules output by the DT classifier are comprehensible to the end-user and, hence, allow the physicians to more confidently accept the results. The preliminary results show that the features are discriminative enough to yield good accuracy. Moreover, the proposed technique is completely automated, accurate, and can be easily written as a software application for use in any computer

    An automated technique for carotid far wall classification using grayscale features and wall thickness variability.

    No full text
    Purpose To test a computer-aided diagnostic method for differentiating symptomatic from asymptomatic carotid B-mode ultrasonographic images. Methods Our system (called Atheromatic) automatically computed the intima-media thickness (IMT) of the carotid far wall using AtheroEdge, calculated nonlinear features based on higher order spectra, and used these features and IMT and IMT variability (IMTVpoly) to associate each image to a feature vector that was then labeled as symptomatic or asymptomatic (Sym/Asym) by a multiclassifiers system. We tested this method on a database of 118 carotid artery images from 37 symptomatic and 22 asymptomatic patients Results The highest accuracy (99.1%) was obtained by the support vector machine classifier using seven features. These features, relevant to discriminate Sym/Asym, included IMT and IMTVpoly, along with the bispectral entropies of the distal wall image at 77°, 78°, and 79° angles. Conclusions Classification in Sym/Asym of the far carotid wall is feasible and accurate and could be useful for the early detection of atherosclerosis and to identify patients with higher cardiovascular risk

    Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study

    No full text
    In 30% of stroke victims, the cause of stroke has been found to be the stenosis caused by plaques in the carotid artery. Early detection of plaque and subsequent classification of the same into symptomatic and asymptomatic can help the clinicians to choose only those patients who are at a higher risk of stroke for risky surgeries and stenosis treatments. Therefore, in this work, we have proposed a non-invasive computer-aided diagnostic technique to classify the detected plaque into the two classes. Computed tomography (CT) images of the carotid artery images were used to extract Local Binary Pattern (LBP) features and wavelet energy features. Significant features were then used to train and test several supervised learning algorithm based classifiers. The Support Vector Machine (SVM) classifier with various kernel configurations was evaluated using LBP and wavelet features. The SVM classifier presented the highest accuracy of 88%, sensitivity of 90.2%, and specificity of 86.5% for radial basis function (RBF) kernel function. The CT images of the carotid artery provide unique 3D images of the artery and plaque that could be used for calculating percentage of stenosis. Our proposed technique enables automatic classification of plaque into asymptomatic and symptomatic with high accuracy, and hence, it can be used for deciding the course of treatment. We have also proposed a single-valued integrated index (Atheromatic Index) using the significant features which can provide a more objective and faster prediction of the class

    Ovarian Tumor Characterization using 3D Ultrasound

    No full text
    Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Preoperative determination of whether a tumor is benign or malignant has often been found to be difficult. Because of such inconclusive findings from ultrasound images and other tests, many patients with benign conditions have been offered unnecessary surgeries thereby increasing patient anxiety and healthcare cost. The key objective of our work is to develop an adjunct Computer Aided Diagnostic (CAD) technique that uses ultrasound images of the ovary and image mining algorithms to accurately classify benign and malignant ovarian tumor images. In this algorithm, we extract texture features based on Local Binary Patterns (LBP) and Laws Texture Energy (LTE) and use them to build and train a Support Vector Machine (SVM) classifier. Our technique was validated using 1000 benign and 1000 malignant images, and we obtained a high accuracy of 99.9% using a SVM classifier with a Radial Basis Function (RBF) kernel. The high accuracy can be attributed to the determination of the novel combination of the 16 texture based features that quantify the subtle changes in the images belonging to both classes. The proposed algorithm has the following characteristics: cost-effectiveness, complete automation, easy deployment, and good end-user comprehensibility. We have also developed a novel integrated index, Ovarian Cancer Index (OCI), which is a combination of the texture features, to present the physicians with a more transparent adjunct technique for ovarian tumor classification

    A Review on Ultrasound-based Thyroid Cancer Tissue Characterization and Automated Classification.

    No full text
    In this paper, we review the different studies that developed Computer Aided Diagnostic (CAD) for automated classification of thyroid cancer into benign and malignant types. Specifically, we discuss the different types of features that are used to study and analyze the differences between benign and malignant thyroid nodules. These features can be broadly categorized into (a) the sonographic features from the ultrasound images, and (b) the non-clinical features extracted from the ultrasound images using statistical and data mining techniques. We also present a brief description of the commonly used classifiers in ultrasound based CAD systems. We then review the studies that used features based on the ultrasound images for thyroid nodule classification and highlight the limitations of such studies. We also discuss and review the techniques used in studies that used the non-clinical features for thyroid nodule classification and report the classification accuracies obtained in these studies

    Symptomatic vs. Asymptomatic Plaque Classification in Carotid Ultrasound

    No full text
    Quantitative characterization of carotid atherosclerosis and classification into symptomatic or asymptomatic type is crucial in both diagnosis and treatment planning. This paper describes a computer-aided diagnosis (CAD) system which analyzes ultrasound images and classifies them into symptomatic and asymptomatic based on the textural features. The proposed CAD system consists of three modules. The first module is preprocessing, which conditions the images for the subsequent feature extraction. The feature extraction stage uses image texture analysis to calculate Standard deviation, Entropy, Symmetry, and Run Percentage. Finally, classification is performed using AdaBoost and Support Vector Machine for automated decision making. For Adaboost, we compared the performance of five distinct configurations (Least Squares, Maximum- Likelihood, Normal Density Discriminant Function, Pocket, and Stumps) of this algorithm. For Support Vector Machine, we compared the performance using five different configurations (linear kernel, polynomial kernel configurations of different orders and radial basis function kernels). SVM with radial basis function kernel for support vector machine presented the best classification result: classification accuracy of 82.4%, sensitivity of 82.9%, and specificity of 82.1%. We feel that texture features coupled with the Support Vector Machine classifier can be used to identify the plaque tissue type. An Integrated Index, called symptomatic asymptomatic carotid index (SACI), is proposed using texture features to discriminate symptomatic and asymptomatic carotid ultrasound images using just one index or number. We hope this SACI can be used as an adjunct tool by the vascular surgeons for daily screening

    GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization

    No full text
    Ovarian cancer is the fifth highest cause of cancer in women and the leading cause of death from gynecological cancers. Accurate diagnosis of ovarian cancer from acquired images is dependent on the expertise and experience of ultrasonographers or physicians, and is therefore, associated with inter observer variabilities. Computer Aided Diagnostic (CAD) techniques use a number of different data mining techniques to automatically predict the presence or absence of cancer, and therefore, are more reliable and accurate. A review of published literature in the field of CAD based ovarian cancer detection indicates that many studies use ultrasound images as the base for analysis. The key objective of this work is to propose an effective adjunct CAD technique called GyneScan for ovarian tumor detection in ultrasound images. In our proposed data mining framework, we extract several texture features based on first order statistics, Gray Level Co-occurrence Matrix and run length matrix. The significant features selected using t-test are then used to train and test several supervised learning based classifiers such as Probabilistic Neural Networks (PNN), Support Vector Machine (SVM), Decision Tree (DT), k-Nearest Neighbor (KNN), and Naive Bayes (NB). We evaluated the developed framework using 1300 benign and 1300 malignant images. Using 11 significant features in KNN/PNN classifiers, we were able to achieve 100% classification accuracy, sensitivity, specificity, and positive predictive value in detecting ovarian tumor. Even though more validation using larger databases would better establish the robustness of our technique, the preliminary results are promising. This technique could be used as a reliable adjunct method to existing imaging modalities to provide a more confident second opinion on the presence/absence of ovarian tumor

    Semiautomated analysis of carotid artery wall thickness in MRI

    No full text
    PURPOSE: To develop a semiautomatic method based on level set method (LSM) for carotid arterial wall thickness (CAWT) measurement. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) of diseased carotid arteries was acquired from 10 patients. Ground truth (GT) data for arterial wall segmentation was collected from three experienced vascular clinicians. The semiautomatic variational LSM was employed to segment lumen and arterial wall outer boundaries on 102 MR images. Two computer-based measurements, arterial wall thickness (WT) and arterial wall area (AWA), were computed and compared with GT. Linear regression, Bland-Altman, and bias correlation analysis on WT and AWA were applied for evaluating the performance of the semiautomatic method. RESULTS: Arterial wall thickness measured by radial distance measure (RDM) and polyline distance measure (PDM) correlated well between GT and variational LSM (r = 0.83 for RDM and r = 0.64 for PDM, P < 0.05). The absolute arterial wall area bias between LSM and three observers is less than 10%, suggesting LSM can segment arterial wall well compared with manual tracings. The Jaccard Similarity (Js ) analysis showed a good agreement for the segmentation results between proposed method and GT (Js 0.71 ± 0.08), the mean curve distance for lumen boundary is 0.34 ± 0.2 mm between the proposed method and GT, and 0.47 ± 0.2 mm for outer wall boundary. CONCLUSION: The proposed LSM can generate reasonably accurate lumen and outer wall boundaries compared to manual segmentation, and can work similar to a human reader. However, it tends to overestimate CAWT and AWA compared to the manual segmentation for arterial wall with small are
    corecore