13 research outputs found

    Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity

    Get PDF
    Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation

    Tectonic implications of garnet-bearing mantle xenoliths exhumed by Quaternary magmatism in the Hangay dome, central Mongolia

    No full text
    Garnet-bearing mantle xenoliths have been recovered from Quaternary alkali basalts, both within and peripheral to the Hangay dome of central Mongolia. Microfabric analysis and thermobaromery, combining empirical thermobarometers and the self-consistent dataset of THERMOCALC, indicate that garnet websterites from the Shavaryn-Tsaram volcanic centre at the dome core were formed in the spinel-lherzolite upper mantle at pressures of 17–18 kbars and temperatures of 1,070–1,090°C, whereas garnet lherzolites were derived from greater depths (18–20 kbars). Garnet lherzolites from the Baga Togo Uul vents near the dome edge were formed at 18–22 kbars under significantly cooler conditions (960–1,000°C). These xenoliths reveal reaction coronas of (1) orthopyroxene, clinopyroxene, plagioclase and spinel mantling garnets; (2) spongy rims of olivine replacing orthopyroxene and (3) low-Na, low-Al clinopyroxene replacing primary clinopyroxene. Trace-element abundances indicate that clinopyroxene from these coronas is in chemical equilibrium with the host magma. The thermobarometric and textural data suggest that lherzolite xenoliths from both sites were derived from depths of 60–70 km and entrained in magma at 1,200–1,300°C. The average rate of ascent, as determined by olivine zoning, lies in the range 0.2–0.3 m s?1. The contrast in thermal profiles of the upper mantle between the two sites is consistent with a mantle plume beneath the Hangay dome with elevated thermal conditions beneath the core of the dome being comparable to estimates of the Pleistocene geotherm beneath the Baikal rift

    Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton

    No full text
    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation
    corecore