27 research outputs found

    Improving healthcare delivery with new interactive visualization methods

    Get PDF
    Over the last years, the implementation and evolution of computer resources in hospital institutions has been improving both the financial and temporal efficiency of clinical processes, as well as the security in the transmission and maintenance of their data, also ensuring the reduction of clinical risk. Diagnosis, treatment and prevention of human illness are some of the most information-intensive of all intellectual tasks. Health providers often do not have or cannot find the information they need to respond quickly and appropriately to patient’s medical problems. Failure to review and follow up on patient’s test results in a timely manner, for example, represents a patient’s safety and malpractice concern. Therefore, it was sought to identify problems in a medical exams results management system and possible ways to improve this system in order to reduce both clinical risks and hospital costs. In this sense, a new medical exams visualization platform (AIDA-MCDT) was developed, specifically in the Hospital Center of Porto (CHP), with several new functionalities in order to make this process faster, intuitive and efficient, always guaranteeing the confidentiality and protection of patients’ personal data and significantly improving the usability of the system, leading to a better health care delivery.FCT - Fundação para a Ciência e a Tecnologia (UID/CEC/00319/2019

    Chikungunya virus entry is strongly inhibited by phospholipase A2 isolated from the venom of Crotalus durissus terrificus

    Get PDF
    Chikungunya virus (CHIKV) is the etiologic agent of Chikungunya fever, a globally spreading mosquito-borne disease. There is no approved antiviral or vaccine against CHIKV, highlighting an urgent need for novel therapies. In this context, snake venom proteins have demonstrated antiviral activity against several viruses, including arboviruses which are relevant to public health. In particular, the phospholipase A2CB (PLA2CB), a protein isolated from the venom of Crotalus durissus terrificus was previously shown to possess anti-inflammatory, antiparasitic, antibacterial and antiviral activities. In this study, we investigated the multiple effects of PLA2CB on the CHIKV replicative cycle in BHK-21 cells using CHIKV-nanoluc, a marker virus carrying nanoluciferase reporter. The results demonstrated that PLA2CB possess a strong anti-CHIKV activity with a selectivity index of 128. We identified that PLA2CB treatment protected cells against CHIKV infection, strongly impairing virus entry by reducing adsorption and post-attachment stages. Moreover, PLA2CB presented a modest yet significant activity towards post-entry stages of CHIKV replicative cycle. Molecular docking calculations indicated that PLA2CB may interact with CHIKV glycoproteins, mainly with E1 through hydrophobic interactions. In addition, infrared spectroscopy measurements indicated interactions of PLA2CB and CHIKV glycoproteins, corroborating with data from in silico analyses. Collectively, this data demonstrated the multiple antiviral effects of PLA2CB on the CHIKV replicative cycle, and suggest that PLA2CB interacts with CHIKV glycoproteins and that this interaction blocks binding of CHIKV virions to the host cells

    Effect of proteins isolated from Brazilian snakes on enterovirus A71 replication cycle: An approach against hand, foot and mouth disease

    No full text
    Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals
    corecore